Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens

被引:111
作者
Botos, Istvan [1 ]
Majdalani, Nadim [2 ]
Mayclin, Stephen J. [1 ]
McCarthy, Jennifer Gehret [1 ]
Lundquist, Karl [3 ]
Wojtowicz, Damian [4 ]
Barnard, Travis J. [1 ]
Gumbart, James C. [3 ]
Buchanan, Susan K. [1 ]
机构
[1] NIDDK, Mol Biol Lab, NIH, Bethesda, MD 20892 USA
[2] NCI, Mol Biol Lab, NIH, Bldg 37, Bethesda, MD 20892 USA
[3] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[4] NIH, Natl Ctr Biotechnol Informat, Bldg 10, Bethesda, MD 20892 USA
基金
美国国家科学基金会;
关键词
TRANSENVELOPE PROTEIN COMPLEX; OUTER-MEMBRANE; LIPOPOLYSACCHARIDE TRANSPORT; BETA-BARREL; CRYSTAL-STRUCTURE; BIOGENESIS; CHANNEL; EXPORT; MACHINERY; INSERTION;
D O I
10.1016/j.str.2016.03.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Incorporation of lipopolysaccharide (LPS) into the outer membrane of Gram-negative bacteria is essential for viability, and is accomplished by a two-protein complex called LptDE. We solved crystal structures of the core LptDE complexes from Yersinia pestis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and a full-length structure of the K. pneumoniae LptDE complex. Our structures adopt the same plug and 26-strand beta-barrel architecture found recently for the Shigella flexneri and Salmonella typhimurium LptDE structures, illustrating a conserved fold across the family. A comparison of the only two full-length structures, SfLptDE and our KpLptDE, reveals a 21 degrees rotation of the LptD N-terminal domain that may impart flexibility on the trans-envelope LptCAD scaffold. Utilizingmutagenesis coupled to an in vivo functional assay and molecular dynamics simulations, we demonstrate the critical role of Pro231 and Pro246 in the function of the LptD lateral gate that allows partitioning of LPS into the outer membrane.
引用
收藏
页码:965 / 976
页数:12
相关论文
共 61 条
[41]   Cytoplasmic ATP Hydrolysis Powers Transport of Lipopolysaccharide Across the Periplasm in E-coli [J].
Okuda, Suguru ;
Freinkman, Elizaveta ;
Kahne, Daniel .
SCIENCE, 2012, 338 (6111) :1214-1217
[42]   Processing of X-ray diffraction data collected in oscillation mode [J].
Otwinowski, Z ;
Minor, W .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :307-326
[43]   Structural basis for lipopolysaccharide insertion in the bacterial outer membrane [J].
Qiao, Shuai ;
Luo, Qingshan ;
Zhao, Yan ;
Zhang, Xuejun Cai ;
Huang, Yihua .
NATURE, 2014, 511 (7507) :108-U523
[44]   Lipid a modification systems in gram-negative bacteria [J].
Raetz, Christian R. H. ;
Reynolds, C. Michael ;
Trent, M. Stephen ;
Bishop, Russell E. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2007, 76 :295-329
[45]   Lipopolysaccharide endotoxins [J].
Raetz, CRH ;
Whitfield, C .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :635-700
[46]   Advances in understanding bacterial outer-membrane biogenesis [J].
Ruiz, N ;
Kahne, D ;
Silhavy, TJ .
NATURE REVIEWS MICROBIOLOGY, 2006, 4 (01) :57-66
[47]   Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli [J].
Ruiz, Natividad ;
Gronenberg, Luisa S. ;
Kahne, Daniel ;
Silhavy, Thomas J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (14) :5537-5542
[48]   TIMELINE Transport of lipopolysaccharide across the cell envelope: the long road of discovery [J].
Ruiz, Natividad ;
Kahne, Daniel ;
Silhavy, Thomas J. .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (09) :677-683
[49]   Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport [J].
Sherman, David J. ;
Lazarus, Michael B. ;
Murphy, Lea ;
Liu, Charles ;
Walker, Suzanne ;
Ruiz, Natividad ;
Kahne, Daniel .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (13) :4982-4987
[50]  
Simpson BW., 2015, Philos Trans R Soc Lond B Biol Sci, V370