Quantitative Analysis of Boundary Layers in Periodic Homogenization
被引:21
作者:
Armstrong, Scott
论文数: 0引用数: 0
h-index: 0
机构:
PSL Res Univ, Univ Paris Dauphine, CEREMADE, CNRS,UMR 7534, F-75016 Paris, FrancePSL Res Univ, Univ Paris Dauphine, CEREMADE, CNRS,UMR 7534, F-75016 Paris, France
Armstrong, Scott
[1
]
Kuusi, Tuomo
论文数: 0引用数: 0
h-index: 0
机构:
Aalto Univ, Dept Math & Syst Anal, Espoo, FinlandPSL Res Univ, Univ Paris Dauphine, CEREMADE, CNRS,UMR 7534, F-75016 Paris, France
Kuusi, Tuomo
[2
]
Mourrat, Jean-Christophe
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Normale Super Lyon, CNRS, UMPA, UMR 5669, Lyon, FrancePSL Res Univ, Univ Paris Dauphine, CEREMADE, CNRS,UMR 7534, F-75016 Paris, France
Mourrat, Jean-Christophe
[3
]
Prange, Christophe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, CNRS, UMR 5251, IMB, Bordeaux, FrancePSL Res Univ, Univ Paris Dauphine, CEREMADE, CNRS,UMR 7534, F-75016 Paris, France
Prange, Christophe
[4
]
机构:
[1] PSL Res Univ, Univ Paris Dauphine, CEREMADE, CNRS,UMR 7534, F-75016 Paris, France
[2] Aalto Univ, Dept Math & Syst Anal, Espoo, Finland
[3] Ecole Normale Super Lyon, CNRS, UMPA, UMR 5669, Lyon, France
[4] Univ Bordeaux, CNRS, UMR 5251, IMB, Bordeaux, France
We prove quantitative estimates on the rate of convergence for the oscillating Dirichlet problem in periodic homogenization of divergence-form uniformly elliptic systems. The estimates are optimal in dimensions larger than three and new in every dimension. We also prove a regularity estimate on the homogenized boundary condition.