Isometric dilations of non-commuting finite rank n-tuples

被引:40
作者
Davidson, KR [1 ]
Kribs, DW
Shpigel, ME
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Mitra Imaging Inc, Waterloo, ON N2L 1W3, Canada
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2001年 / 53卷 / 03期
关键词
D O I
10.4153/CJM-2001-022-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A contractive n-tuple A = (A(1),...,A(n)) has a minimal joint isometric dilation S = (S-1,...,S-n) where the Si's are isometries with pairwise orthogonal ranges. This determines a representation of the Cuntz-Toeplitz algebra. When A acts on a finite dimensional space, the wot-closed nonself-adjoint algebra G generated by S is completely described in terms of the properties of A. This provides complete unitary invariants for the corresponding representations. In addition, we show that the algebra G is always hyper-reflexive. In the last section. we describe similarity invariants. In particular, an n-tuple B of d x d matrices is similar to an irreducible ti-tuple A if and only ifa certain finite set of polynomials vanish on B.
引用
收藏
页码:506 / 545
页数:40
相关论文
共 34 条
[1]   FACTORIZATION AND REFLEXIVITY ON FOCK SPACES [J].
ARIAS, A ;
POPESCU, G .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 23 (03) :268-286
[2]   INTERPOLATION PROBLEMS IN NEST ALGEBRAS [J].
ARVESON, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 20 (03) :208-233
[3]  
ARVESON W, 1998, CURVATURE INVARIANT
[4]  
ARVESON W, IN PRESS ACTA MATH
[5]   REDUCTION THEORY FOR NON-SELF-ADJOINT OPERATOR ALGEBRAS [J].
AZOFF, EA ;
FONG, CK ;
GILFEATHER, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 224 (02) :351-366
[6]   Hyper-reflexivity and the factorization of linear functionals [J].
Bercovici, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (01) :242-252
[7]   ON 2 PROBLEMS CONCERNING LINEAR TRANSFORMATIONS IN HILBERT SPACE [J].
BEURLING, A .
ACTA MATHEMATICA, 1949, 81 (02) :239-255
[8]  
BRATELI O, IN PRESS MEM AM MATH
[9]   Endomorphisms of B(H) .2. Finely correlated states on O-n [J].
Bratteli, O ;
Jorgensen, PET .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 145 (02) :323-373
[10]  
Bratteli O., 1996, Proc. Sympos. Pure Math., V59, P93