Maximum entropy inference with quantified knowledge

被引:17
作者
Barnett, Owen [1 ]
Paris, Jeff [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
uncertain reasoning; probability logic; maximum entropy; logic;
D O I
10.1093/jigpal/jzm028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate uncertain reasoning with quantified sentences of the predicate calculus treated as the limiting case of maximum entropy inference applied to finite domains.
引用
收藏
页码:85 / 98
页数:14
相关论文
共 27 条
[1]   From statistical knowledge bases to degrees of belief [J].
Bacchus, F ;
Grove, AJ ;
Halpern, JY ;
Koller, D .
ARTIFICIAL INTELLIGENCE, 1996, 87 (1-2) :75-143
[2]  
Bacchus F., 1994, P 10 ANN C UNC ART I, P37
[3]  
BARNETT OW, 2006, APPL PROBABILISTIC I
[4]  
Carnap R., 1952, CONTINUUM INDUCTIVE
[5]  
CARNAP R, 1963, PHILOS RUDOLF CARNAP
[6]  
de Finetti Bruno, 1974, THEORY PROBABILITY C, V1-2
[7]  
Ebbinghaus H.D., 1999, PERSPECTIVES MATH LO
[8]  
ECCLES PJ, 2004, INTRO MATH REASONING
[9]   PROBABILITIES ON FINITE MODELS [J].
FAGIN, R .
JOURNAL OF SYMBOLIC LOGIC, 1976, 41 (01) :50-58
[10]   CONCERNING MEASURES IN FIRST ORDER CALCULI [J].
GAIFMAN, H .
ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (01) :1-&