Existence and Multiplicity of Solutions for a p(x)-biharmonic Problem with Neumann Boundary Conditions

被引:4
作者
El Amrouss, Abdel Rachid [1 ]
Moradi, Fouzia [2 ]
Moussaoui, Mimoun [1 ]
机构
[1] Univ Mohamed I, Fac Sci, Dept Math, Oujda, Morocco
[2] Univ Mohamed I, Natl Sch Appl Sci, Dept Math, Al Hoceima, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2022年 / 40卷
关键词
p(x)-biharmonic operator; Critical point; Nemytskii's operator; EIGENVALUES;
D O I
10.5269/bspm.42168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following problem with Neumann boundary conditions {Delta(2)(p(x)) + alpha vertical bar u vertical bar(p(x) - 2) u = beta f (x,u) in Omega, partial derivative u/partial derivative v = partial derivative.partial derivative v (vertical bar Delta u vertical bar(p(x) - 2) Delta u) = 0 on partial derivative Omega Where Omega is a bounded domain in R-N with smooth boundary partial derivative Omega, N >= 1, Delta(2)(p(x))u := Delta (vertical bar Delta u vertical bar(p(x) - 2) Delta u), is the p(x)-biharmonic operator, alpha and beta are two positives reals numbers, p is a continuous function on (Omega) over bar with inf(x is an element of(Omega) over bar) p(x) > 1 and f : Omega x R -> R is a Caratheodory function such that f (x, 0) = 0. Using the three critical point Theorem, we establish the existence of at least three solutions of this problem.
引用
收藏
页数:15
相关论文
共 16 条
[1]   On the spectrum of a fourth order elliptic equation with variable exponent [J].
Ayoujil, A. ;
El Amrouss, A. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4916-4926
[2]   Eigenvalues of the p(x)-Laplacian Neumann problems [J].
Fan, Xianling .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (10) :2982-2992
[3]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852
[4]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[5]   Eigenvalues of p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (02) :306-317
[6]   A Knobloch-type result for p(t)-Laplacian systems [J].
Fan, XL ;
Fan, X .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 282 (02) :453-464
[7]  
Gilbarg D., 1983, Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V224
[8]   ELECTRORHEOLOGICAL FLUIDS [J].
HALSEY, TC .
SCIENCE, 1992, 258 (5083) :761-766
[9]   Overview of differential equations with non-standard growth [J].
Harjulehto, Petteri ;
Hasto, Peter ;
Le, Ut V. ;
Nuortio, Matti .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4551-4574
[10]  
Israel R. B., 2002, SOBOLEV SPACE