Drought priming alleviated salinity stress and improved water use efficiency of wheat plants

被引:15
|
作者
Singha, Ashutus [1 ,2 ]
Soothar, Rajesh Kumar [1 ]
Wang, Chao [1 ]
Marin, Elio Enrique Trujillo [1 ]
Tankari, Moussa [1 ]
Hao, Weiping [1 ]
Wang, Yaosheng [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, State Engn Lab Efficient Water Use Crops & Disast, Minist Agr & Rural Affairs China,Key Lab Dryland, Beijing, Peoples R China
[2] Sylhet Agr Univ, Dept Irrigat & Water Management, Sylhet, Bangladesh
关键词
Triticum aestivum L; Salinity tolerance; Hormones; delta C-13; ABA; Water stress; SALT TOLERANCE; TEMPERATURE STRESS; GRAIN DEVELOPMENT; VEGETATIVE STAGE; THERMO-TOLERANCE; HEAT-STRESS; PHOTOSYNTHESIS; RESISTANCE; LEAF; ACCLIMATION;
D O I
10.1007/s10725-021-00781-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Global warming and salinization are inducing adverse effects on crop yield. Drought priming has been proved to improve drought tolerance of plants at later growth stages, however, whether and how drought priming at early growth stage alleviating salinity stress at later growth stage and improving water use efficiency (WUE) of plants remains unknown. Therefore, two wheat cultivars were subjected to drought priming at the 4th and 6th leaf stage and subsequent moderate salinity stress at 100 mmol NaCl applied at the later jointing growth stage. The growth, physiological responses, ABA signaling and WUE were investigated to unravel the regulating mechanisms of drought priming on subsequent salinity stress. The results showed that drought priming imposed at the early growth stage improved the leaf and root water potential while attenuated the ABA concentration in the leaves ([ABA](leaf)) for the primed plants, which increased the stomatal conductance (g(s)) and photosynthesis (P-n). Consequently, the biomass under the salinity stress was significantly increased due to earlier drought priming. Moreover, drought priming improved the specific leaf N content due to the facilitated root growth and morphology, and this could benefit high leaf photosynthetic capacity during the salinity stress period, improving the P-n and water uptake for the primed plants. Drought priming significantly improved plant level WUE (WUEp) due to considerably enhanced dry biomass compared with non-primed plants under subsequent salinity stress. The significantly increased leaf delta C-13 under drought priming further demonstrated that the improved leaf delta C-13 and WUEp was mainly ascribed to the improvement of P-n. Drought primed plants significantly improved K-+/- concentration and maintained the K+/Na+ ratio compared with non-primed plants under subsequent salinity stress, which could mitigate the adverse effects of excess Na+ and minimize salt-induced ionic toxicity by improving salt tolerance for primed plants. Therefore, drought priming at early growth stage could be considered as a promising strategy for salt-prone areas to optimize agricultural sustainability and food security under changing climatic conditions.
引用
收藏
页码:357 / 368
页数:12
相关论文
共 50 条
  • [31] microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency
    Lorenzo Giusti
    Erica Mica
    Edoardo Bertolini
    Anna Maria De Leonardis
    Primetta Faccioli
    Luigi Cattivelli
    Cristina Crosatti
    Functional & Integrative Genomics, 2017, 17 : 293 - 309
  • [32] A Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat
    Peng, Zhenying
    Wang, Mengcheng
    Li, Fei
    Lv, Hongjun
    Li, Cuiling
    Xia, Guangmin
    MOLECULAR & CELLULAR PROTEOMICS, 2009, 8 (12) : 2676 - 2686
  • [33] Priming of seeds with cyanobacteria improved tolerance in wheat (Triticum aestivum L.) during post-germinative drought stress
    Sneha, G. R.
    Govindasamy, Venkadasamy
    Singh, Pradeep Kumar
    Kumar, Sarvendra
    Abraham, Gerard
    JOURNAL OF APPLIED PHYCOLOGY, 2024, 36 (03) : 1233 - 1246
  • [34] Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.)
    Abid, Muhammad
    Shao, Yuhang
    Liu, Sixi
    Wang, Feng
    Gao, Jingwen
    Jiang, Dong
    Tian, Zhongwei
    Dai, Tingbo
    PLANTA, 2017, 246 (03) : 509 - 524
  • [35] Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress
    Ghazi N. Al-Karaki
    Mycorrhiza, 1998, 8 : 41 - 45
  • [36] Salinity and drought stress on barley and wheat cultivars planted in Turkey
    Yoruk, E.
    Keles, E. N.
    Sefer, O.
    Eraslan, M.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2018, 39 (06) : 943 - 950
  • [37] Effects of Salinity and Drought Stress on Grain Quality of Durum Wheat
    Houshmand, S.
    Arzani, A.
    Mirmohammadi-Maibody, S. A. M.
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2014, 45 (03) : 297 - 308
  • [38] Drought and Salinity in Citriculture: Optimal Practices to Alleviate Salinity and Water Stress
    Ziogas, Vasileios
    Tanou, Georgia
    Morianou, Giasemi
    Kourgialas, Nektarios
    AGRONOMY-BASEL, 2021, 11 (07):
  • [39] Efficacy of Salicylic Acid as a Cofactor for Ameliorating Effects of Water Stress and Enhancing Wheat Yield and Water Use Efficiency in Saline Soil
    Hafez, Emad
    Farig, Mohamed
    INTERNATIONAL JOURNAL OF PLANT PRODUCTION, 2019, 13 (02) : 163 - 176
  • [40] The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium
    Alzahrani, Yahya
    Kusvuran, Alpaslan
    Alharby, Hesham F.
    Kusvuran, Sebnem
    Rady, Mostafa M.
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2018, 154 : 187 - 196