Non-Gaussian likelihood of weak lensing power spectra

被引:11
作者
Hall, Alex [1 ]
Taylor, Andy [1 ]
机构
[1] Univ Edinburgh, Inst Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland
基金
英国科学技术设施理事会; 欧洲研究理事会; 英国科研创新办公室;
关键词
LARGE-SCALE STRUCTURE; APPROXIMATION; REIONIZATION; TEMPERATURE; TOMOGRAPHY; BISPECTRUM; INFERENCE; UNIVERSE; MODELS; IMPACT;
D O I
10.1103/PhysRevD.105.123527
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The power spectrum of weak lensing fluctuations has a non-Gaussian distribution due to its quadratic nature. On small scales the central limit theorem acts to Gaussianize this distribution but non-Gaussianity in the signal due to gravitational collapse is increasing and the functional form of the likelihood is unclear. Analyses have traditionally assumed a Gaussian likelihood with nonlinearity incorporated into the covariance matrix; here we provide the theory underpinning this assumption. We calculate, for the first time, the leading-order correction to the distribution of angular power spectra from non-Gaussianity in the underlying signal and study the transition to Gaussianity. Our expressions are valid for an arbitrary number of correlated maps and correct the Wishart distribution in the presence of weak (but otherwise arbitrary) non-Gaussianity in the signal. Surprisingly, the resulting distribution is not equivalent to an Edgeworth expansion. The leading-order effect is to broaden the covariance matrix by the usual trispectrum term, with residual skewness sourced by the trispectrum and the square of the bispectrum. Using log-normal lensing maps we demonstrate that our likelihood is uniquely able to model both large and mildly nonlinear scales. We provide easy-to-compute statistics to quantify the size of the non-Gaussian corrections. We show that the full non-Gaussian likelihood can be accurately modeled as a Gaussian on small, nonlinear scales. On large angular scales nonlinearity in the lensing signal imparts a negligible correction to the likelihood, which takes the Wishart form in the full-sky case. Our formalism is equally applicable to any kind of projected field.
引用
收藏
页数:31
相关论文
共 71 条
[1]   Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing [J].
Abbott, T. M. C. ;
Aguena, M. ;
Alarcon, A. ;
Allam, S. ;
Alves, O. ;
Amon, A. ;
Andrade-Oliveira, F. ;
Annis, J. ;
Avila, S. ;
Bacon, D. ;
Baxter, E. ;
Bechtol, K. ;
Becker, M. R. ;
Bernstein, G. M. ;
Bhargava, S. ;
Birrer, S. ;
Blazek, J. ;
Brandao-Souza, A. ;
Bridle, S. L. ;
Brooks, D. ;
Buckley-Geer, E. ;
Burke, D. L. ;
Camacho, H. ;
Campos, A. ;
Carnero Rosell, A. ;
Carrasco Kind, M. ;
Carretero, J. ;
Castander, F. J. ;
Cawthon, R. ;
Chang, C. ;
Chen, A. ;
Chen, R. ;
Choi, A. ;
Conselice, C. ;
Cordero, J. ;
Costanzi, M. ;
Crocce, M. ;
da Costa, L. N. ;
Pereira, M. E. da Silva ;
Davis, C. ;
Davis, T. M. ;
De Vicente, J. ;
DeRose, J. ;
Desai, S. ;
Di Valentino, E. ;
Diehl, H. T. ;
Dietrich, J. P. ;
Dodelson, S. ;
Doel, P. ;
Doux, C. .
PHYSICAL REVIEW D, 2022, 105 (02)
[2]   Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing [J].
Abbott, T. M. C. ;
Abdalla, F. B. ;
Alarcon, A. ;
Aleksic, J. ;
Allam, S. ;
Allen, S. ;
Amara, A. ;
Annis, J. ;
Asorey, J. ;
Avila, S. ;
Bacon, D. ;
Balbinot, E. ;
Banerji, M. ;
Banik, N. ;
Barkhouse, W. ;
Baumer, M. ;
Baxter, E. ;
Bechtol, K. ;
Becker, M. R. ;
Benoit-Levy, A. ;
Benson, B. A. ;
Bernstein, G. M. ;
Bertin, E. ;
Blazek, J. ;
Bridle, S. L. ;
Brooks, D. ;
Brout, D. ;
Buckley-Geer, E. ;
Burke, D. L. ;
Busha, M. T. ;
Campos, A. ;
Capozzi, D. ;
Rosell, A. Carnero ;
Kind, M. Carrasco ;
Carretero, J. ;
Castander, F. J. ;
Cawthon, R. ;
Chang, C. ;
Chen, N. ;
Childress, M. ;
Choi, A. ;
Conselice, C. ;
Crittenden, R. ;
Crocce, M. ;
Cunha, C. E. ;
D'Andrea, C. B. ;
da Costa, L. N. ;
Das, R. ;
Davis, T. M. ;
Davis, C. .
PHYSICAL REVIEW D, 2018, 98 (04)
[3]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[4]   Fast likelihood-free cosmology with neural density estimators and active learning [J].
Alsing, Justin ;
Charnock, Tom ;
Feeney, Stephen ;
Wandelt, Benjamin .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (03) :4440-4458
[5]   Non-Gaussian likelihood function and COBE data [J].
Amendola, L .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 283 (03) :983-989
[6]  
[Anonymous], CUILLIN
[7]   TEASING: a fast and accurate approximation for the low multipole likelihood of the cosmic microwave background temperature [J].
Benabed, K. ;
Cardoso, J. -F. ;
Prunet, S. ;
Hivon, E. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 400 (01) :219-227
[8]   PROPERTIES OF THE COSMOLOGICAL DENSITY DISTRIBUTION FUNCTION [J].
BERNARDEAU, F ;
KOFMAN, L .
ASTROPHYSICAL JOURNAL, 1995, 443 (02) :479-498
[9]   Large-scale structure of the Universe and cosmological perturbation theory [J].
Bernardeau, F ;
Colombi, S ;
Gaztañaga, E ;
Scoccimarro, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3) :1-248
[10]   CMB spectra and bispectra calculations: making the flat-sky approximation rigorous [J].
Bernardeau, Francis ;
Pitrou, Cyril ;
Uzan, Jean-Philippe .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (02)