Prevalence and mutational determinants of high tumor mutation burden in breast cancer

被引:260
作者
Barroso-Sousa, R. [1 ,2 ,6 ]
Jain, E. [2 ,3 ]
Cohen, O. [2 ,3 ]
Kim, D. [2 ,3 ]
Buendia-Buendia, J. [2 ,3 ]
Winer, E. [1 ,4 ,5 ]
Lin, N. [1 ,4 ,5 ]
Tolaney, S. M. [1 ,4 ,5 ]
Wagle, N. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Dana Farber Canc Inst, Dept Med Oncol, 450 Brookline Ave,Dana 820A, Boston, MA 02215 USA
[2] Dana Farber Canc Inst, Ctr Canc Precis Med, Boston, MA 02215 USA
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] Harvard Med Sch, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, Dept Med, 75 Francis St, Boston, MA 02115 USA
[6] Hosp Sirio Libanes Brasilia, Oncol Ctr, Brasilia, DF, Brazil
关键词
breast cancer; tumor mutational burden; APOBEC; mutational signatures; immunotherapy; mismatch repair deficiency; CTLA-4; BLOCKADE; PD-1; EXPRESSION; LANDSCAPE; EXOME;
D O I
10.1016/j.annonc.2019.11.010
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: High tumor mutation burden (TMB) can benefit immunotherapy for multiple tumor types, but the prevalence of hypermutated breast cancer is not well described. The aim of this study was to evaluate the frequency, mutational patterns, and genomic profile of hypermutated breast cancer. Patients and methods: We used de-identified data from individuals with primary or metastatic breast cancer from six different publicly available genomic studies. The prevalence of hypermutated breast cancer was determined among 3969 patients' samples that underwent whole exome sequencing or gene panel sequencing. The samples were classified as having high TMB if they had >= 10 mutations per megabase (mut/Mb). An additional eight patients were identified from a Dana-Farber Cancer Institute cohort for inclusion in the hypermutated cohort. Among the patients with high TMB, the mutational patterns and genomic profiles were determined. A subset of patients was treated with regimens containing PD-1 inhibitors. Results: The median TMB was 2.63 mut/Mb. The median TMB significantly varied according to the tumor subtype (HR-/HER2- >HER2+ >HR+/HER2-, P < 0.05) and sample type (metastatic > primary, P = 2.2 x 10(-16)). Hypermutated tumors were found in 198 patients (5%), with enrichment in metastatic versus primary tumors (8.4% versus 2.9%, P = 6.5 x 10(-14)). APOBEC activity (59.2%), followed by mismatch repair deficiency (MMRd; 36.4%), were the most common mutational processes among hypermutated tumors. Three patients with hypermutated breast cancer-including two with a dominant APOBEC activity signature and one with a dominant MMRd signature-treated with pembrolizumab-based therapies derived an objective and durable response to therapy. Conclusion: Hypermutation occurs in 5% of all breast cancers with enrichment in metastatic tumors. Different mutational signatures are present in this population with APOBEC activity being the most common dominant process. Preliminary data suggest that hypermutated breast cancers are more likely to benefit from PD-1 inhibitors.
引用
收藏
页码:387 / 394
页数:8
相关论文
共 30 条
[1]   Current Landscape of Immunotherapy in Breast Cancer: A Review [J].
Adams, Sylvia ;
Gatti-Mays, Margaret E. ;
Kalinsky, Kevin ;
Korde, Larissa A. ;
Sharon, Elad ;
Amiri-Kordestani, Laleh ;
Bear, Harry ;
McArthur, Heather L. ;
Frank, Elizabeth ;
Perlmutter, Jane ;
Page, David B. ;
Vincent, Benjamin ;
Hayes, Jennifer F. ;
Gulley, James L. ;
Litton, Jennifer K. ;
Hortobagyi, Gabriel N. ;
Chia, Stephen ;
Krop, Ian ;
White, Julia ;
Sparano, Joseph ;
Disis, Mary L. ;
Mittendorf, Elizabeth A. .
JAMA ONCOLOGY, 2019, 5 (08) :1205-1214
[2]   High expression of PD-1 ligands is associated with kataegis mutational signature and APOBEC3 alterations [J].
Boichard, Amelie ;
Tsigelny, Igor F. ;
Kurzrock, Razelle .
ONCOIMMUNOLOGY, 2017, 6 (03)
[3]   Comprehensive Analysis of Hypermutation in Human Cancer [J].
Campbell, Brittany B. ;
Light, Nicholas ;
Fabrizio, David ;
Zatzman, Matthew ;
Fuligni, Fabio ;
de Borja, Richard ;
Davidson, Scott ;
Edwards, Melissa ;
Elvin, Julia A. ;
Hodel, Karl P. ;
Zahurancik, Walter J. ;
Suo, Zucai ;
Lipman, Tatiana ;
Wimmer, Katharina ;
Kratz, Christian P. ;
Bowers, Daniel C. ;
Laetsch, Theodore W. ;
Dunn, Gavin P. ;
Johanns, Tanner M. ;
Grimmer, Matthew R. ;
Smirnov, Ivan V. ;
Larouche, Valerie ;
Samuel, David ;
Bronsema, Annika ;
Osborn, Michael ;
Stearns, Duncan ;
Raman, Pichai ;
Cole, Kristina A. ;
Storm, Phillip B. ;
Yalon, Michal ;
Opocher, Enrico ;
Mason, Gary ;
Thomas, Gregory A. ;
Sabel, Magnus ;
George, Ben ;
Ziegler, David S. ;
Lindhorst, Scott ;
Issai, Vanan Magimairajan ;
Constantini, Shlomi ;
Toledano, Helen ;
Elhasid, Ronit ;
Farah, Roula ;
Dvir, Rina ;
Dirks, Peter ;
Huang, Annie ;
Galati, Melissa A. ;
Chung, Jiil ;
Ramaswamy, Vijay ;
Irwin, Meredith S. ;
Aronson, Melyssa .
CELL, 2017, 171 (05) :1042-+
[4]   Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice [J].
Campesato, Luis Felipe ;
Barroso-Sousa, Romualdo ;
Jimenez, Leandro ;
Correa, Bruna R. ;
Sabbaga, Jorge ;
Hoff, Paulo M. ;
Reis, Luiz F. L. ;
Galante, Pedro Alexandre F. ;
Camargo, Anamaria A. .
ONCOTARGET, 2015, 6 (33) :34221-34227
[5]   Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic [J].
Chan, T. A. ;
Yarchoan, M. ;
Jaffee, E. ;
Swanton, C. ;
Quezada, S. A. ;
Stenzinger, A. ;
Peters, S. .
ANNALS OF ONCOLOGY, 2019, 30 (01) :44-56
[6]  
Cohen WL, 2017, CURR PERSP HOLISTIC, P77
[7]   Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy [J].
Cristescu, Razvan ;
Mogg, Robin ;
Ayers, Mark ;
Albright, Andrew ;
Murphy, Erin ;
Yearley, Jennifer ;
Sher, Xinwei ;
Liu, Xiao Qiao ;
Lu, Hongchao ;
Nebozhyn, Michael ;
Zhang, Chunsheng ;
Lunceford, Jared ;
Joe, Andrew ;
Cheng, Jonathan ;
Webber, Andrea L. ;
Ibrahim, Nageatte ;
Plimack, Elizabeth R. ;
Ott, Patrick A. ;
Seiwert, Tanguy ;
Ribas, Antoni ;
McClanahan, Terrill K. ;
Tomassini, Joanne E. ;
Loboda, Andrey ;
Kaufman, David .
SCIENCE, 2018, 362 (6411) :197-+
[8]   Expression of tumour-specific antigens underlies cancer immunoediting [J].
DuPage, Michel ;
Mazumdar, Claire ;
Schmidt, Leah M. ;
Cheung, Ann F. ;
Jacks, Tyler .
NATURE, 2012, 482 (7385) :405-U1512
[9]   The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine [J].
Garofalo, Andrea ;
Sholl, Lynette ;
Reardon, Brendan ;
Taylor-Weiner, Amaro ;
Amin-Mansour, Ali ;
Miao, Diana ;
Liu, David ;
Oliver, Nelly ;
MacConaill, Laura ;
Ducar, Matthew ;
Rojas-Rudilla, Vanesa ;
Giannakis, Marios ;
Ghazani, Arezou ;
Gray, Stacy ;
Janne, Pasi ;
Garber, Judy ;
Joffe, Steve ;
Lindeman, Neal ;
Wagle, Nikhil ;
Garraway, Levi A. ;
Van Allen, Eliezer M. .
GENOME MEDICINE, 2016, 8
[10]   Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma [J].
Giannakis, Marios ;
Mu, Xinmeng Jasmine ;
Shukla, Sachet A. ;
Qian, Zhi Rong ;
Cohen, Ofir ;
Nishihara, Reiko ;
Bahl, Samira ;
Cao, Yin ;
Amin-Mansour, Ali ;
Yamauchi, Mai ;
Sukawa, Yasutaka ;
Stewart, Chip ;
Rosenberg, Mara ;
Mima, Kosuke ;
Inamura, Kentaro ;
Nosho, Katsuhiko ;
Nowak, Jonathan A. ;
Lawrence, Michael S. ;
Giovannucci, Edward L. ;
Chan, Andrew T. ;
Ng, Kimmie ;
Meyerhardt, Jeffrey A. ;
Van Allen, Eliezer M. ;
Getz, Gad ;
Gabriel, Stacey B. ;
Lander, Eric S. ;
Wu, Catherine J. ;
Fuchs, Charles S. ;
Ogino, Shuji ;
Garraway, Levi A. .
CELL REPORTS, 2016, 15 (04) :857-865