Directional regularity and metric regularity

被引:22
作者
Arutyunov, Aram V.
Avakov, Evgeniy R.
Izmailov, Alexey F.
机构
[1] Patrice Lumumba Peoples Friendship Univ, Moscow 117806, Russia
[2] Russian Acad Sci, Inst Control Problems, Moscow 117806, Russia
[3] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Dept Operat Res, Moscow 119992, Russia
[4] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119992, Russia
关键词
metric regularity; Robinson's constraint qualification; directional regularity; directional metric regularity; feasible arc; sensitivity;
D O I
10.1137/060651616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For general constraint systems in Banach spaces, we present the directional stability theorem based on the appropriate generalization of the directional regularity condition, suggested earlier in [A. V. Arutyunov and A. F. Izmailov, Math. Oper. Res., 31 (2006), pp. 526-543]. This theorem contains Robinson's stability theorem but does not reduce to it. Furthermore, we develop the related concept of directional metric regularity which is stable subject to small Lipschitzian perturbations of the constraint mapping, and which is equivalent to directional regularity for sufficiently smooth mappings. Finally, we discuss some applications in sensitivity theory.
引用
收藏
页码:810 / 833
页数:24
相关论文
共 50 条
  • [41] Error bounds in metric spaces and application to the perturbation stability of metric regularity
    Huynh Van Ngai
    Thera, Michel
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 1 - 20
  • [42] Enhanced metric regularity and Lipschitzian properties of variational systems
    Francisco J. Aragón Artacho
    Boris S. Mordukhovich
    Journal of Global Optimization, 2011, 50 : 145 - 167
  • [43] METRIC REGULARITY AND SUBDIFFERENTIAL CALCULUS IN BANACH-SPACES
    JOURANI, A
    THIBAULT, L
    SET-VALUED ANALYSIS, 1995, 3 (01): : 87 - 100
  • [44] On Characterizations of Metric Regularity of Multi-Valued Maps
    Ivanov, Milen
    Zlateva, Nadia
    JOURNAL OF CONVEX ANALYSIS, 2020, 27 (01) : 381 - 388
  • [45] Metric regularity of semi-infinite constraint systems
    M.J. Cánovas
    A.L. Dontchev
    M.A. López
    J. Parra
    Mathematical Programming, 2005, 104 : 329 - 346
  • [46] Coderivative calculus and metric regularity for constraint and variational systems
    Geremew, W.
    Mordukhovich, B. S.
    Nam, N. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 529 - 552
  • [47] On Metric Regularity and the Boundary of the Feasible Set in Linear Optimization
    Larriqueta, Mercedes
    Vera de Serio, Virginia N.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (01) : 1 - 17
  • [48] Metric regularity of semi-infinite constraint systems
    Cánovas, MJ
    Dontchev, L
    López, MA
    Parra, J
    MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 329 - 346
  • [49] Metric Regularity of Mappings and Generalized Normals to Set Images
    Boris S. Mordukhovich
    Nguyen Mau Nam
    Bingwu Wang
    Set-Valued and Variational Analysis, 2009, 17 : 359 - 387
  • [50] Stability of Mann's iterates under metric regularity
    Geoffroy, Michel H.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (02) : 686 - 694