Directional regularity and metric regularity

被引:22
|
作者
Arutyunov, Aram V.
Avakov, Evgeniy R.
Izmailov, Alexey F.
机构
[1] Patrice Lumumba Peoples Friendship Univ, Moscow 117806, Russia
[2] Russian Acad Sci, Inst Control Problems, Moscow 117806, Russia
[3] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Dept Operat Res, Moscow 119992, Russia
[4] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119992, Russia
关键词
metric regularity; Robinson's constraint qualification; directional regularity; directional metric regularity; feasible arc; sensitivity;
D O I
10.1137/060651616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For general constraint systems in Banach spaces, we present the directional stability theorem based on the appropriate generalization of the directional regularity condition, suggested earlier in [A. V. Arutyunov and A. F. Izmailov, Math. Oper. Res., 31 (2006), pp. 526-543]. This theorem contains Robinson's stability theorem but does not reduce to it. Furthermore, we develop the related concept of directional metric regularity which is stable subject to small Lipschitzian perturbations of the constraint mapping, and which is equivalent to directional regularity for sufficiently smooth mappings. Finally, we discuss some applications in sensitivity theory.
引用
收藏
页码:810 / 833
页数:24
相关论文
共 50 条
  • [21] Metric regularity under approximations
    Dontchev, Asen L.
    Veliov, Vladimir M.
    CONTROL AND CYBERNETICS, 2009, 38 (04): : 1283 - 1303
  • [22] Metric Regularity of the Sum of Multifunctions and Applications
    Huynh Van Ngai
    Nguyen Huu Tron
    Michel Théra
    Journal of Optimization Theory and Applications, 2014, 160 : 355 - 390
  • [23] METRIC REGULARITY OF NEWTON'S ITERATION
    Aragon Artacho, F. J.
    Dontchev, A. L.
    Gaydu, M.
    Geoffroy, M. H.
    Veliov, V. M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (02) : 339 - 362
  • [24] Characterization of metric regularity of sub differentials
    Aragon Artacho, Francisco J.
    Geoffroy, Michel H.
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (02) : 365 - 380
  • [25] A NEW TYPE OF DIRECTIONAL REGULARITY FOR MAPPINGS AND APPLICATION TO OPTIMIZATION
    Durea, Marius
    Pantiruc, Marian
    Strugariu, Radu
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 1204 - 1229
  • [26] Characterization of metric regularity for σ-subsmooth multifunctions
    Zheng, Xi Yin
    He, Qing Hai
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 100 : 111 - 121
  • [27] Metric Regularity of the Sum of Multifunctions and Applications
    Huynh Van Ngai
    Nguyen Huu Tron
    Thera, Michel
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (02) : 355 - 390
  • [28] Metric Subregularity and ω(⋅)-Normal Regularity Properties
    Nacry, Florent
    Nguyen, Vo Anh Thuong
    Venel, Juliette
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (02) : 1439 - 1470
  • [29] Estimations of directional Holder regularity by shearlets
    Hu Lin
    Liu YouMing
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) : 791 - 812
  • [30] Implicit mapping theorem for extended metric regularity in metric spaces
    Marinov R.T.
    Nedelcheva D.K.
    Ricerche di Matematica, 2013, 62 (1) : 55 - 66