Time-dependent realization of the infinite-dimensional hydrogen algebra

被引:2
|
作者
Daboul, J [1 ]
Winternitz, P
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[2] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
基金
加拿大自然科学与工程研究理事会;
关键词
Runge-Lenz vector; time-dependent Hamiltonians; super-integrable Hamiltonians; Kac-Moody algebras; Kepler equation;
D O I
10.1016/S0375-9601(01)00166-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the Hamiltonian formalism to investigate the Katzin-Levine model of a time-dependent Kepler problem. This formalism enables us to define Lie products in terms of Poisson brackets and obtain a time-dependent realization of centerless twisted (or standard) Kac-Moody algebras of so(N + 1), We also show that the classical solutions of the model are modulated conic sections and derive a generalized Kepler equation for the time dependence. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [21] Infinite-Dimensional Linear Algebra and Solvability of Partial Differential Equations
    Todorov, Todor D.
    JOURNAL OF LOGIC AND ANALYSIS, 2021, 13 : 1 - 34
  • [22] A SPINOR REPRESENTATION OF AN INFINITE-DIMENSIONAL ORTHOGONAL SEMIGROUP AND THE VIRASORO ALGEBRA
    NERETIN, YA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1989, 23 (03) : 196 - 207
  • [23] LIE-ALGEBRA COHOMOLOGY OF CERTAIN INFINITE-DIMENSIONAL REPRESENTATIONS
    OSBORNE, MS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (05) : 852 - 854
  • [24] H2-FUNCTIONS AND INFINITE-DIMENSIONAL REALIZATION THEORY
    BARAS, JS
    BROCKETT, RW
    SIAM JOURNAL ON CONTROL, 1975, 13 (01): : 221 - 241
  • [25] Deformations of the infinite-dimensional Lie algebra L3
    Yu. Yu. Kochetkov
    Functional Analysis and Its Applications, 2006, 40 : 228 - 233
  • [26] On q-deformed infinite-dimensional n-algebra
    Ding, Lu
    Jia, Xiao-Yu
    Wu, Ke
    Yan, Zhao-Wen
    Zhao, Wei-Zhong
    NUCLEAR PHYSICS B, 2016, 904 : 18 - 38
  • [27] CONVERGENCE AND CONVERGENCE RATE OF THE BALANCED REALIZATION TRUNCATIONS FOR INFINITE-DIMENSIONAL DISCRETE-TIME-SYSTEMS
    BONNET, C
    SYSTEMS & CONTROL LETTERS, 1993, 20 (05) : 353 - 359
  • [28] On balanced realization and finite-dimensional approximation for infinite-dimensional nonlinear systems
    Fujimoto, Kenji
    Ono, Sayaka
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4215 - 4220
  • [29] TIME-REVERSAL OF INFINITE-DIMENSIONAL DIFFUSIONS
    FOLLMER, H
    WAKOLBINGER, A
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1986, 22 (01) : 59 - 77
  • [30] TIME-REVERSAL FOR INFINITE-DIMENSIONAL DIFFUSIONS
    MILLET, A
    NUALART, D
    SANZ, M
    PROBABILITY THEORY AND RELATED FIELDS, 1989, 82 (03) : 315 - 347