Solitary Wave Solutions to the KPP Equation by the Homotopy Analysis Method

被引:0
作者
Lu, Dian-chen [1 ]
Jiang, Yue [1 ]
Cheng, Yue-ling [1 ]
机构
[1] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
来源
INTERNATIONAL CONFERENCE ON SIMULATION, MODELLING AND MATHEMATICAL STATISTICS (SMMS 2015) | 2015年
关键词
Homotopy analysis method; KPP equation; Solitary wave solutions; KDV EQUATION; SOLVE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An analytic technique, named the homotopy analysis method (HAM), is effectively presented for obtaining solitary wave solutions governed by the KPP (Kolmogorov-Petrovskii-Piskunov) equation. The method used here contains an auxiliary parameter h, which is used to adjust the convergence speed and convergence range of the series solution. According to the residual error analysis, we find that it nearly tends to zero. This result shows that the HAM is a valid and accurate method for solving the nonlinear equations.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 16 条
[1]   Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method [J].
Abbasbandy, S. .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (12) :2706-2714
[2]   Homotopy analysis method for generalized Benjamin-Bona-Mahony equation [J].
Abbasbandy, S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (01) :51-62
[3]   Soliton solutions for the fifth-order KdV equation with the homotopy analysis method [J].
Abbasbandy, S. ;
Zakaria, F. Samadian .
NONLINEAR DYNAMICS, 2008, 51 (1-2) :83-87
[4]   The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation [J].
Abbasbandy, S. .
PHYSICS LETTERS A, 2007, 361 (06) :478-483
[5]  
[Anonymous], 2003, Beyond Perturbation: Introduction to Homotopy Analysis Method, DOI 10.1201/9780203491164
[6]   THE SPEED OF PROPAGATION FOR KPP TYPE PROBLEMS. II: GENERAL DOMAINS [J].
Berestycki, Henri ;
Hamel, Francois ;
Nadirashvili, Nikolai .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (01) :1-34
[7]   The non-local Fisher-KPP equation: travelling waves and steady states [J].
Berestycki, Henri ;
Nadin, Gregoire ;
Perthame, Benoit ;
Ryzhik, Lenya .
NONLINEARITY, 2009, 22 (12) :2813-2844
[8]  
Kametaka Y., 1976, Osaka J. Math, V13, P11, DOI DOI 10.18910/9093
[9]   An analytic approach to solve multiple solutions of a strongly nonlinear problem [J].
Li, SC ;
Liao, SJ .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (02) :854-865
[10]  
Liao S, 2004, APPL MATH COMPUT, V147, P499, DOI 10.1016/50096-3003(02)00790-7