An improved phase shift reconstruction algorithm of fringe scanning technique for X-ray microscopy

被引:1
作者
Lian, S. [1 ]
Yang, H. [1 ]
Kudo, H. [2 ]
Momose, A. [3 ]
Yashiro, W. [3 ]
机构
[1] Midorino Res Corp, Yamato, Kanagawa 2420008, Japan
[2] Univ Tsukuba, Fac Engn Informat & Syst, Div Informat Engn, Tsukuba, Ibaraki 3058573, Japan
[3] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, Sendai, Miyagi 9808577, Japan
关键词
CONTRAST; TOMOGRAPHY;
D O I
10.1063/1.4908139
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The X-ray phase imaging method has been applied to observe soft biological tissues, and it is possible to image the soft tissues by using the benefit of the so-called "Talbot effect" by an X-ray grating. One type of the X-ray phase imaging method was reported by combining an X-ray imaging microscope equipped by a Fresnel zone plate with a phase grating. Using the fringe scanning technique, a high-precision phase shift image could be obtained by displacing the grating step by step and measuring dozens of sample images. The number of the images was selected to reduce the error caused by the non-sinusoidal component of the Talbot self-image at the imaging plane. A larger number suppressed the error more but increased radiation exposure and required higher mechanical stability of equipment. In this paper, we analyze the approximation error of fringe scanning technique for the X-ray microscopy which uses just one grating and proposes an improved algorithm. We compute the approximation error by iteration and substitute that into the process of reconstruction of phase shift. This procedure will suppress the error even with few sample images. The results of simulation experiments show that the precision of phase shift image reconstructed by the proposed algorithm with 4 sample images is almost the same as that reconstructed by the conventional algorithm with 40 sample images. We also have succeeded in the experiment with real data. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 15 条
[1]   AN X-RAY INTERFEROMETER [J].
BONSE, U ;
HART, M .
APPLIED PHYSICS LETTERS, 1965, 6 (08) :155-&
[2]   X-ray phase-contrast imaging: from pre-clinical applications towards clinics [J].
Bravin, Alberto ;
Coan, Paola ;
Suortti, Pekka .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (01) :R1-R35
[3]   DIGITAL WAVEFRONT MEASURING INTERFEROMETER FOR TESTING OPTICAL SURFACES AND LENSES [J].
BRUNING, JH ;
HERRIOTT, DR ;
GALLAGHER, JE ;
ROSENFELD, DP ;
WHITE, AD ;
BRANGACCIO, DJ .
APPLIED OPTICS, 1974, 13 (11) :2693-2703
[4]   Differential x-ray phase contrast imaging using a shearing interferometer [J].
David, C ;
Nöhammer, B ;
Solak, HH ;
Ziegler, E .
APPLIED PHYSICS LETTERS, 2002, 81 (17) :3287-3289
[5]   PHASE-CONTRAST IMAGING OF WEAKLY ABSORBING MATERIALS USING HARD X-RAYS [J].
DAVIS, TJ ;
GAO, D ;
GUREYEV, TE ;
STEVENSON, AW ;
WILKINS, SW .
NATURE, 1995, 373 (6515) :595-598
[6]   X-RAY PLANE-WAVE TOPOGRAPHY OBSERVATION OF THE PHASE-CONTRAST FROM A NONCRYSTALLINE OBJECT [J].
INGAL, VN ;
BELIAEVSKAYA, EA .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1995, 28 (11) :2314-2317
[7]   Improved algorithm for processing grating-based phase contrast interferometry image sets [J].
Marathe, Shashidhara ;
Assoufid, Lahsen ;
Xiao, Xianghui ;
Ham, Kyungmin ;
Johnson, Warren W. ;
Butler, Leslie G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (01)
[8]   Demonstration of X-Ray Talbot interferometry [J].
Momose, A ;
Kawamoto, S ;
Koyama, I ;
Hamaishi, Y ;
Takai, K ;
Suzuki, Y .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2003, 42 (7B) :L866-L868
[9]   Phase-contrast X-ray computed tomography for observing biological soft tissues [J].
Momose, A ;
Takeda, T ;
Itai, Y ;
Hirano, K .
NATURE MEDICINE, 1996, 2 (04) :473-475
[10]   Phase tomography by X-ray Talbot interferometry for biological imaging [J].
Momose, Atsushi ;
Yashiro, Wataru ;
Takeda, Yoshihiro ;
Suzuki, Yoshio ;
Hattori, Tadashi .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (6A) :5254-5262