Relatively Compact Sets in Variable Exponent Morrey Spaces on Metric Spaces

被引:5
作者
Bandaliyev, Rovshan A. [1 ,2 ]
Gorka, Przemyslaw [3 ]
Guliyev, Vagif S. [1 ,2 ,4 ,5 ]
Sawano, Yoshihiro [6 ]
机构
[1] People Friendship Univ Russia, RUDN Univ, 6 Maklaya St, Moscow 117198, Russia
[2] NAS Azerbaijan Baku, Inst Math & Mech, Baku, Azerbaijan
[3] Warsaw Univ Technol, Dept Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
[4] Dumlupinar Univ, Dept Math, Kutahya, Turkey
[5] Baku State Univ, Inst Appl Math, Baku, Azerbaijan
[6] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo, Japan
基金
俄罗斯基础研究基金会;
关键词
Metric measure spaces; variable exponent Lebesgue spaces; Morrey spaces; compactness; SINGULAR-OPERATORS; LEBESGUE SPACES; EMBEDDINGS;
D O I
10.1007/s00009-021-01828-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a characterization of the precompactness of sets in variable exponent Morrey spaces on bounded metric measure spaces. Totally bounded sets are characterized from several points of view for the case of variable exponent Morrey spaces over metric measure spaces. This characterization is new in the case of constant exponents.
引用
收藏
页数:23
相关论文
共 36 条
[1]  
Adams D. R., 2015, MORREY SPACES
[2]  
Almeida A, 2008, GEORGIAN MATH J, V15, P195
[3]  
Bandaliev RA, 2018, MOSC MATH J, V18, P1
[4]   RELATIVELY COMPACT SETS IN VARIABLE-EXPONENT LEBESGUE SPACES [J].
Bandaliyev, Rovshan ;
Gorka, Przemyslaw .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (02) :331-346
[5]  
Bokayev NA, 2017, EURASIAN MATH J, V8, P109
[6]   Compactness in quasi-Banach function spaces and applications to compact embeddings of Besov-type spaces [J].
Caetano, Antonio ;
Gogatishvili, Amiran ;
Opic, Bohumir .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) :905-927
[7]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[8]  
Diening L., 2005, FUNCTION SPACES DIFF, P38
[9]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[10]   BANACH FUNCTION SPACES ON LOCALLY COMPACT GROUPS [J].
Gorka, Przemyslaw ;
Pospiech, Pawel .
ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (04) :460-471