Asymptotic properties of Bernstein estimators on the simplex

被引:12
作者
Ouimet, Frederic [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Asymptotic normality; Bernstein estimators; Compositional data; Cumulative distribution function estimation; Density estimation; Mean squared error; Simplex; Uniform strong consistency; BAYESIAN DENSITY-ESTIMATION; NONPARAMETRIC-ESTIMATION; CONDITIONAL DISTRIBUTION; MULTINOMIAL DISTRIBUTION; TESTING INDEPENDENCE; CONVERGENCE-RATES; SMOOTH ESTIMATION; POLYNOMIAL MODEL; COPULA; REGRESSION;
D O I
10.1016/j.jmva.2021.104784
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bernstein estimators are well-known to avoid the boundary bias problem of traditional kernel estimators. The theoretical properties of these estimators have been studied extensively on compact intervals and hypercubes, but never on the simplex, except for the mean squared error of the density estimator in Tenbusch (1994) when d = 2. The simplex is an important case as it is the natural domain of compositional data. In this paper, we make an effort to prove several asymptotic results (bias, variance, mean squared error (MSE), mean integrated squared error (MISE), asymptotic normality, uniform strong consistency) for Bernstein estimators of cumulative distribution functions and density functions on the d-dimensional simplex. Our results generalize the ones in Leblanc (2012a) and Babu et al. (2002), who treated the case d = 1, and significantly extend those found in Tenbusch (1994). In particular, our rates of convergence for the MSE and MISE are optimal. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 121 条
  • [21] L1-rate of convergence of smoothed histogram
    Bouezmarni, T.
    Mesfioui, M.
    Rolin, J. M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2007, 77 (14) : 1497 - 1504
  • [22] Consistency of asymmetric kernel density estimators and smoothed histograms with application to income data
    Bouezmarni, T
    Scaillet, O
    [J]. ECONOMETRIC THEORY, 2005, 21 (02) : 390 - 412
  • [23] Consistency of the beta kernel density function estimator
    Bouezmarni, T
    Rolin, JM
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (01): : 89 - 98
  • [24] Bernstein estimator for unbounded copula densities
    Bouezmarni, Taoufik
    El Ghouch, Anouar
    Taamouti, Abderrahim
    [J]. STATISTICS & RISK MODELING, 2013, 30 (04) : 343 - 360
  • [25] Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality
    Bouezmarni, Taoufik
    Rombouts, Jeroen V. K.
    Taamouti, Abderrahim
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2012, 30 (02) : 275 - 287
  • [26] Asymptotic properties of the Bernstein density copula estimator for α-mixing data
    Bouezmarni, Taoufik
    Rombouts, Jeroen V. K.
    Taamouti, Abderrahim
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (01) : 1 - 10
  • [27] Practical Bayesian estimation of a finite beta mixture through gibbs sampling and its applications
    Bouguila, N
    Ziou, D
    Monga, E
    [J]. STATISTICS AND COMPUTING, 2006, 16 (02) : 215 - 225
  • [28] Beta-Bernstein smoothing for regression curves with compact support
    Brown, BM
    Chen, SX
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1999, 26 (01) : 47 - 59
  • [29] Semi-nonparametric estimation with Bernstein polynomials
    Chak, PM
    Madras, N
    Smith, B
    [J]. ECONOMICS LETTERS, 2005, 89 (02) : 153 - 156
  • [30] CHANG I.-S., 2007, I MATH STAT LECT NOT, V54, P187, DOI DOI 10.1214/074921707000000157