Asymptotic properties of Bernstein estimators on the simplex

被引:12
作者
Ouimet, Frederic [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Asymptotic normality; Bernstein estimators; Compositional data; Cumulative distribution function estimation; Density estimation; Mean squared error; Simplex; Uniform strong consistency; BAYESIAN DENSITY-ESTIMATION; NONPARAMETRIC-ESTIMATION; CONDITIONAL DISTRIBUTION; MULTINOMIAL DISTRIBUTION; TESTING INDEPENDENCE; CONVERGENCE-RATES; SMOOTH ESTIMATION; POLYNOMIAL MODEL; COPULA; REGRESSION;
D O I
10.1016/j.jmva.2021.104784
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bernstein estimators are well-known to avoid the boundary bias problem of traditional kernel estimators. The theoretical properties of these estimators have been studied extensively on compact intervals and hypercubes, but never on the simplex, except for the mean squared error of the density estimator in Tenbusch (1994) when d = 2. The simplex is an important case as it is the natural domain of compositional data. In this paper, we make an effort to prove several asymptotic results (bias, variance, mean squared error (MSE), mean integrated squared error (MISE), asymptotic normality, uniform strong consistency) for Bernstein estimators of cumulative distribution functions and density functions on the d-dimensional simplex. Our results generalize the ones in Leblanc (2012a) and Babu et al. (2002), who treated the case d = 1, and significantly extend those found in Tenbusch (1994). In particular, our rates of convergence for the MSE and MISE are optimal. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 121 条
  • [1] Abramowitz M., 1948, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, V55, DOI DOI 10.2307/2282672
  • [2] AITCHISON J, 1985, J R STAT SOC C-APPL, V34, P129
  • [3] Estimating a density by adapting an initial guess
    Albers, CJ
    Schaafsma, W
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 42 (1-2) : 27 - 36
  • [4] [Anonymous], 1980, WILEY SERIES PROBABI
  • [5] ARENBAEV NK, 1976, THEOR PROBAB APPL+, V21, P805
  • [6] On estimating the Bernoulli regression function using Bernstein polynomials
    Babilua, P. K.
    Nadaraya, E. A.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (17) : 3928 - 3941
  • [7] Smooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors
    Babu, GJ
    Chaubey, YP
    [J]. STATISTICS & PROBABILITY LETTERS, 2006, 76 (09) : 959 - 969
  • [8] BABU GJ, 1978, J MULTIVARIATE ANAL, V8, P532, DOI 10.1016/0047-259X(78)90031-3
  • [9] Babu GJ, 2002, J STAT PLAN INFER, V105, P377
  • [10] Bagnato L, 2013, COMPUTATION STAT, V28, P1571, DOI 10.1007/s00180-012-0367-4