New fractional-order multivalued problems with nonlocal nonlinear flux type integral boundary conditions

被引:6
作者
Ahmad, Bashir [1 ]
Ntouyas, Sotiris K. [1 ,2 ]
Alsaedi, Ahmed [1 ]
Alzahrani, Faris [1 ]
机构
[1] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
关键词
fractional differential inclusions; nonlocal conditions; integral boundary conditions; fixed point theorems; DIFFERENTIAL-INCLUSIONS; POSITIVE SOLUTIONS; EQUATIONS; EXISTENCE; SPACES;
D O I
10.1186/s13661-015-0346-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study new fractional-order multivalued problems supplemented with nonlocal nonlinear flux type integral boundary conditions. Some existence results are obtained for convex as well as non-convex multivalued maps by applying standard fixed point theorems for such maps. We also discuss examples for the illustration of our results.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 37 条
[11]   EXTENSIONS AND SELECTIONS OF MAPS WITH DECOMPOSABLE VALUES [J].
BRESSAN, A ;
COLOMBO, G .
STUDIA MATHEMATICA, 1988, 90 (01) :69-86
[12]   Positive solutions of nonlinear fractional differential equations with integral boundary value conditions [J].
Cabada, Alberto ;
Wang, Guotao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) :403-411
[13]  
Castaing C., 1977, LECT NOTES MATH, V580, DOI DOI 10.1007/BFB0087686
[14]   FILIPPOV LEMMA FOR A CLASS OF HADAMARD-TYPE FRACTIONAL DIFFERENTIAL INCLUSIONS [J].
Cernea, Aurelian .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (01) :163-171
[15]   Controllability of evolution differential inclusions in Banach spaces [J].
Chang, Yong-Kui ;
Li, Wan-Tong ;
Nieto, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (02) :623-632
[16]   MULTI-VALUED CONTRACTION MAPPINGS IN GENERALIZED METRIC SPACES [J].
COVITZ, H ;
NADLER, SB .
ISRAEL JOURNAL OF MATHEMATICS, 1970, 8 (01) :5-&
[17]  
Deimling K., 1992, GRUYTER SERIES NONLI, DOI DOI 10.1515/9783110874228
[18]  
Dhage BC, 2014, TOPOL METHOD NONL AN, V44, P229
[19]  
Frigon M., 1995, NATO ASI SER C-MATH, VC 472, P51
[20]   Existence and uniqueness of solutions for a fractional boundary value problem on a graph [J].
Graef, John R. ;
Kong, Lingju ;
Wang, Min .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :499-510