Deep-Learning System Detects Neoplasia in Patients With Barrett's Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking

被引:246
作者
de Groof, Albert J. [1 ]
Struyvenberg, Maarten R. [1 ]
van der Putten, Joost [2 ]
van der Sommen, Fons [2 ]
Fockens, Kiki N. [1 ]
Curvers, Wouter L. [3 ]
Zinger, Sveta [2 ]
Pouw, Roos E. [1 ]
Coron, Emmanuel [4 ]
Baldaque-Silva, Francisco [5 ,6 ]
Pech, Oliver [7 ]
Weusten, Bas [8 ]
Meining, Alexander [9 ]
Neuhaus, Horst [10 ]
Bisschops, Raf [11 ]
Dent, John [12 ,13 ]
Schoon, Erik J. [3 ]
de With, Peter H. [2 ]
Bergman, Jacques J. [1 ]
机构
[1] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Gastroenterol & Hepatol, Amsterdam, Netherlands
[2] Eindhoven Univ Technol, Dept Elect Engn, Video Coding & Architectures Grp, Eindhoven, Netherlands
[3] Catharina Hosp, Dept Gastroenterol & Hepatol, Eindhoven, Netherlands
[4] Univ Hosp Nantes, Inst Malad Appareil Digestif, Pl Alexis Ricordeau, Nantes, France
[5] Karolinska Univ Hosp, Dept Digest Dis, Stockholm, Sweden
[6] Karolinska Inst, Stockholm, Sweden
[7] Krankenhaus Barmherzige Bruder, Gastroenterol & Intervent Endoscopy, Regensburg, Germany
[8] St Antonius Hosp, Dept Gastroenterol & Hepatol, Nieuwegein, Netherlands
[9] Ulm Univ, Ctr Internal Med, Ulm, Germany
[10] Evangel Krankenhaus Dusseldorf, Internal Med, Dusseldorf, Germany
[11] Univ Hosp Leuven, Dept Gastroenterol & Hepatol, Leuven, Belgium
[12] Univ Adelaide, Dept Med, Adelaide, SA, Australia
[13] Royal Adelaide Hosp, Adelaide, SA, Australia
关键词
artificial intelligence; Barrett surveillance; esophageal cancer; machine learning; COLORECTAL LESIONS; ADENOCARCINOMA; CLASSIFICATION; MANAGEMENT; HISTOLOGY;
D O I
10.1053/j.gastro.2019.11.030
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
BACKGROUND & AIMS: We aimed to develop and validate a deep-learning computer-aided detection (CAD) system, suitable for use in real time in clinical practice, to improve endoscopic detection of early neoplasia in patients with Barrett's esophagus (BE). METHODS: We developed a hybrid ResNet-UNet model CAD system using 5 independent endoscopy data sets. We performed pretraining using 494,364 labeled endoscopic images collected from all intestinal segments. Then, we used 1704 unique esophageal high-resolution images of rigorously confirmed early-stage neoplasia in BE and nondysplastic BE, derived from 669 patients. System performance was assessed by using data sets 4 and 5. Data set 5 was also scored by 53 general endoscopists with a wide range of experience from 4 countries to benchmark CAD system performance. Coupled with histopathology findings, scoring of images that contained early-stage neoplasia in data sets 2-5 were delineated in detail for neoplasm position and extent by multiple experts whose evaluations served as the ground truth for segmentation. RESULTS: The CAD system classified images as containing neoplasms or nondysplastic BE with 89% accuracy, 90% sensitivity, and 88% specificity (data set 4, 80 patients and images). In data set 5 (80 patients and images) values for the CAD system vs those of the general endoscopists were 88% vs 73% accuracy, 93% vs 72% sensitivity, and 83% vs 74% specificity. The CAD system achieved higher accuracy than any of the individual 53 nonexpert endoscopists, with comparable delineation performance. CAD delineations of the area of neoplasm overlapped with those from the BE experts in all detected neoplasia in data sets 4 and 5. The CAD system identified the optimal site for biopsy of detected neoplasia in 97% and 92% of cases (data sets 4 and 5, respectively). CONCLUSIONS: We developed, validated, and benchmarked a deep-learning computer-aided system for primary detection of neoplasia in patients with BE. The system detected neoplasia with high accuracy and near-perfect delineation performance.
引用
收藏
页码:915 / +
页数:19
相关论文
共 35 条
[1]  
[Anonymous], 2017, P 2017 IEEE WINT C A
[2]  
[Anonymous], 2013, WORKSHOP CHALLENGES
[3]  
[Anonymous], 2009, P 2009 IEEE C COMP V
[4]   An Interactive Web-Based Educational Tool Improves Detection and Delineation of Barrett's Esophagus-Related Neoplasia [J].
Bergman, Jacques J. G. H. M. ;
De Groof, A. Jeroen ;
Pech, O. ;
Ragunath, K. ;
Armstrong, D. ;
Mostafavi, N. ;
Lundell, L. ;
Dent, J. ;
Vieth, M. ;
Tytgat, G. N. ;
Sharma, P. .
GASTROENTEROLOGY, 2019, 156 (05) :1299-+
[5]   The Clinical Consequences of Advanced Imaging Techniques in Barrett's Esophagus [J].
Boerwinkel, David F. ;
Swager, Anne-Fre ;
Curvers, Wouter L. ;
Bergman, Jacques J. G. H. M. .
GASTROENTEROLOGY, 2014, 146 (03) :622-+
[6]   Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model [J].
Byrne, Michael F. ;
Chapados, Nicolas ;
Soudan, Florian ;
Oertel, Clemens ;
Linares Perez, Milagros ;
Kelly, Raymond ;
Iqbal, Nadeem ;
Chandelier, Florent ;
Rex, Douglas K. .
GUT, 2019, 68 (01) :94-100
[7]   Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis [J].
Chen, Peng-Jen ;
Lin, Meng-Chiung ;
Lai, Mei-Ju ;
Lin, Jung-Chun ;
Lu, Henry Horng-Shing ;
Tseng, Vincent S. .
GASTROENTEROLOGY, 2018, 154 (03) :568-575
[8]   Blue-light imaging has an additional value to white-light endoscopy in visualization of early Barrett's neoplasia: an international multicenter cohort study [J].
de Groof, Albert J. ;
Swager, Anne-Fre ;
Pouw, Roos E. ;
Weusten, Bas L. A. M. ;
Schoon, Erik J. ;
Bisschops, Raf ;
Pech, Oliver ;
Meining, Alexander ;
Neuhaus, Horst ;
Curvers, Wouter L. ;
Bergman, Jacques J. G. H. M. .
GASTROINTESTINAL ENDOSCOPY, 2019, 89 (04) :749-758
[9]   The Argos project: The development of a computer-aided detection system to improve detection of Barrett's neoplasia on white light endoscopy [J].
de Groof, Jeroen ;
van der Sommen, Fons ;
van der Putten, Joost ;
Struyvenberg, Maarten R. ;
Zinger, Sveta ;
Curvers, Muter L. ;
Pech, Oliver ;
Meining, Alexander ;
Neuhaus, Horst ;
Bisschops, Raf ;
Schoon, Erik J. ;
de With, Peter H. ;
Bergman, Jacques J. .
UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2019, 7 (04) :538-547
[10]   A survey on Barrett's esophagus analysis using machine learning [J].
de Souza Jr, Luis A. ;
Palm, Christoph ;
Mendel, Robert ;
Hook, Christian ;
Ebigbo, Alanna ;
Probst, Andreas ;
Messmann, Helmut ;
Weber, Silke ;
Papa, Joao P. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 96 :203-213