Texygen: A Benchmarking Platform for Text Generation Models

被引:240
作者
Zhu, Yaoming [1 ]
Lu, Sidi [1 ]
Zheng, Lei [1 ]
Guo, Jiaxian [1 ]
Zhang, Weinan [1 ]
Wang, Jun [2 ]
Yu, Yong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] UCL, London, England
来源
ACM/SIGIR PROCEEDINGS 2018 | 2018年
基金
中国国家自然科学基金;
关键词
Text Generation; Benchmarking; Evaluation Metrics;
D O I
10.1145/3209978.3210080
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce Texygen, a benchmarking platform to support research on open-domain text generation models. Texygen has not only implemented a majority of text generation models, but also covered a set of metrics that evaluate the diversity, the quality and the consistency of the generated texts. The Texygen platform could help standardize the research on text generation and improve the reproductivity and reliability of future research work in text generation.
引用
收藏
页码:1097 / 1100
页数:4
相关论文
共 16 条
  • [11] BLEU: a method for automatic evaluation of machine translation
    Papineni, K
    Roukos, S
    Ward, T
    Zhu, WJ
    [J]. 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, 2002, : 311 - 318
  • [12] IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models
    Wang, Jun
    Yu, Lantao
    Zhang, Weinan
    Gong, Yu
    Xu, Yinghui
    Wang, Benyou
    Zhang, Peng
    Zhang, Dell
    [J]. SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 515 - 524
  • [13] WILLIAMS RJ, 1992, MACH LEARN, V8, P229, DOI 10.1007/BF00992696
  • [14] Yu LT, 2017, AAAI CONF ARTIF INTE, P2852
  • [15] Zhang YZ, 2017, PR MACH LEARN RES, V70
  • [16] Zhang Z., 2017, ARXIV170511001