Texygen: A Benchmarking Platform for Text Generation Models

被引:240
作者
Zhu, Yaoming [1 ]
Lu, Sidi [1 ]
Zheng, Lei [1 ]
Guo, Jiaxian [1 ]
Zhang, Weinan [1 ]
Wang, Jun [2 ]
Yu, Yong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] UCL, London, England
来源
ACM/SIGIR PROCEEDINGS 2018 | 2018年
基金
中国国家自然科学基金;
关键词
Text Generation; Benchmarking; Evaluation Metrics;
D O I
10.1145/3209978.3210080
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce Texygen, a benchmarking platform to support research on open-domain text generation models. Texygen has not only implemented a majority of text generation models, but also covered a set of metrics that evaluate the diversity, the quality and the consistency of the generated texts. The Texygen platform could help standardize the research on text generation and improve the reproductivity and reliability of future research work in text generation.
引用
收藏
页码:1097 / 1100
页数:4
相关论文
共 16 条
  • [1] Abadi M., 2016, TENSORFLOW LARGESCAL
  • [2] [Anonymous], 2017, ARXIV170908624
  • [3] [Anonymous], 2015, ARXIV151105101
  • [4] Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
  • [5] Che Tong, 2017, ARXIV170207983
  • [6] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [7] Jelinek Fred, 1977, JASA, V62, pS1
  • [8] Kusner M. J., 2016, ARXIV161104051
  • [9] Li J., 2017, P 2017 C EMP METH NA, P2157, DOI [10.18653/v1/D17-1230, DOI 10.18653/V1/D17-1230]
  • [10] Mikolov T, 2010, 11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 1-2, P1045