Percolation and magnetization for generalized continuous spin models

被引:11
作者
Fortunato, S [1 ]
Satz, H [1 ]
机构
[1] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany
关键词
D O I
10.1016/S0550-3213(01)00034-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
For the Ising model, the spin magnetization transition is equivalent to the percolation transition of Fortuin-Kasteleyn clusters; this result remains valid also for the conventional continuous spin Ising model. The investigation of more general continuous spin models may help to obtain a percolation formulation for the critical behaviour in SU(2) gauge theory. We therefore study a broad class of theories, introducing spin distribution functions, longer range interactions and self-interaction terms. The thermal behaviour of each model turns out to be in the Ising universality class. The corresponding percolation formulations are then obtained by extending the Fortuin-Kasteleyn cluster definition; in several cases they illustrate recent rigorous results. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:601 / 611
页数:11
相关论文
共 20 条
[1]  
BIALAS P, IN PRESS NUCL PHYS B
[2]  
Binder K., 1988, MONTE CARLO SIMULATI
[3]   The random cluster representation for the infinite-spin Ising model: application to QCD pure gauge theory [J].
Blanchard, P ;
Chayes, L ;
Gandolfo, D .
NUCLEAR PHYSICS B, 2000, 588 (1-2) :229-252
[4]   The isotropic O(3) model and the Wolff representation [J].
Campbell, M ;
Chayes, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (13) :L255-L259
[5]   Graphical representations and cluster algorithms II [J].
Chayes, L ;
Machta, J .
PHYSICA A, 1998, 254 (3-4) :477-516
[6]   Discontinuity of the spin-wave stiffness in the two-dimensional XY model [J].
Chayes, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (03) :623-640
[7]   Graphical representations and cluster algorithms .1. Discrete spin systems [J].
Chayes, L ;
Machta, J .
PHYSICA A, 1997, 239 (04) :542-601
[8]   CLUSTERS AND ISING CRITICAL DROPLETS - A RENORMALIZATION GROUP-APPROACH [J].
CONIGLIO, A ;
KLEIN, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (08) :2775-2780
[9]   GHS AND OTHER CORRELATION INEQUALITIES FOR A CLASS OF EVEN FERROMAGNETS [J].
ELLIS, RS ;
MONROE, JL ;
NEWMAN, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 46 (02) :167-182
[10]   Critical behaviour of SU(2) lattice gauge theory. A complete analysis with the chi(2)-method [J].
Engels, J ;
Mashkevich, S ;
Scheideler, T ;
Zinovjev, G .
PHYSICS LETTERS B, 1996, 365 (1-4) :219-224