Deep Multilayer Fusion Dense Network for Hyperspectral Image Classification

被引:60
作者
Li, Zhaokui [1 ]
Wang, Tianning [1 ]
Li, Wei [2 ]
Du, Qian [3 ]
Wang, Chuanyun [1 ]
Liu, Cuiwei [1 ]
Shi, Xiangbin [1 ]
机构
[1] Shenyang Aerosp Univ, Sch Comp Sci, Shenyang 110136, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Deep learning; densely connected convolutional neural network; hyperspectral image (HSI) classification; multilayer feature fusion; SPECTRAL-SPATIAL CLASSIFICATION;
D O I
10.1109/JSTARS.2020.2982614
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep spectral-spatial features fusion has become a research focus in hyperspectral image (HSI) classification. However, how to extract more robust spectral-spatial features is still a challenging problem. In this article, a novel deep multilayer fusion dense network (MFDN) is proposed to improve the performance of HSI classification. The proposed MFDN simultaneously extracts the spatial and spectral features based on different sample input sizes, which can extract abundant spectral and spatial correlation information. First, the principal component analysis algorithm is performed on hyperspectral data to extract low-dimensional HSI data, and then the spatial features are extracted from the low-dimensional 3-D HSI data through 2-D convolutional, 2-D dense block, and average-pooling layers. Second, the spectral features are extracted directly from the raw 3-D HSI data by means of 3-D convolutional, 3-D dense block, and average-pooling layers. Third, the spatial and spectral features are fused together through 3-D convolutional, 3-D dense block, and average-pooling layers. Finally, the fused spectral-spatial features are sent into two full connection layers to extract high-level abstract features. Furthermore, densely connected structures can help alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and improve the HSI classification accuracy. The proposed fusion network outperforms the other state-of-the-art methods especially with a small number of labeled samples. Experimental results demonstrate that it can achieve outstanding hyperspectral classification performance.
引用
收藏
页码:1258 / 1270
页数:13
相关论文
共 28 条
[1]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[2]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[3]   Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels [J].
Fang, Leyuan ;
Li, Shutao ;
Duan, Wuhui ;
Ren, Jinchang ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12) :6663-6674
[4]   Advances in Spectral-Spatial Classification of Hyperspectral Images [J].
Fauvel, Mathieu ;
Tarabalka, Yuliya ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Tilton, James C. .
PROCEEDINGS OF THE IEEE, 2013, 101 (03) :652-675
[5]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[6]   ON MEAN ACCURACY OF STATISTICAL PATTERN RECOGNIZERS [J].
HUGHES, GF .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (01) :55-+
[7]  
Ioffe S, 2015, PR MACH LEARN RES, V37, P448
[8]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[9]   Spectral-Spatial Classification of Hyperspectral Data Using Local and Global Probabilities for Mixed Pixel Characterization [J].
Khodadadzadeh, Mahdi ;
Li, Jun ;
Plaza, Antonio ;
Ghassemian, Hassan ;
Bioucas-Dias, Jose M. ;
Li, Xia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (10) :6298-6314
[10]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001