An Overview of the Advantages of KEAP1-NRF2 System Activation During Inflammatory Disease Treatment

被引:76
|
作者
Keleku-Lukwete, Nadine [1 ]
Suzuki, Mikiko [2 ]
Yamamoto, Masayuki [1 ]
机构
[1] Tohoku Univ, Grad Sch Med, Dept Med Biochem, Sendai, Miyagi, Japan
[2] Tohoku Univ, Grad Sch Med, Ctr Radioisotope Sci, Sendai, Miyagi, Japan
基金
日本学术振兴会;
关键词
NRF2; KEAP1; inflammation; SICKLE-CELL-DISEASE; EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS; TRANSCRIPTION FACTOR NRF2; FUMARIC-ACID ESTERS; PLACEBO-CONTROLLED PHASE-3; INNATE IMMUNE-RESPONSE; SMALL MAF PROTEINS; MULTIPLE-SCLEROSIS; OXIDATIVE STRESS; NRF2-DEFICIENT MICE;
D O I
10.1089/ars.2017.7358
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Significance: Inflammation can be defined as a protective immune response against harmful exogenous and endogenous stimuli. Nevertheless, prolonged or autoimmune inflammatory responses are likely to cause pathological states that are associated with a production of inflammation-associated molecules along with reactive oxygen species (ROS). Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (KEAP1-NRF2) signaling provides a cell protection mechanism against oxidative insults when endogenous stress defense mechanisms are imbalanced. Understanding the roles of the KEAP1-NRF2 system in inflammation caused by various types of stimuli may aid in the development of new therapies. Recent Advances: There have been tremendous advances in understanding the mechanism by which the KEAP1-NRF2 pathway abrogates inflammation. In addition to the well-established ROS-dependent pathway, recent studies have provided evidence of the direct repression of the transcription of pro-inflammatory cytokine genes, such as IL1b and IL6 (encoding Interleukin-1 beta and Interleukin-6, respectively). Further, the expanding functions of NRF2 have elicited interest in the development of therapeutic modalities for inflammatory diseases, including multiple sclerosis and sickle cell disease. Critical Issues and Future Directions: Despite progress in the understanding of molecular mechanisms supporting the roles that NRF2 plays during inflammation, the relationship between NRF2 and other transcription factors and mediators of inflammation still remains ambiguous. Further studies are required to address the effects of functional polymorphisms in KEAP1 and NRF2 that modify susceptibility to specific disease-related inflammation. Comprehensive analyses in the future should explore tissue- or cell-type specific NRF2 activation to elaborate effects of NRF2 induction.
引用
收藏
页码:1746 / 1755
页数:10
相关论文
共 50 条
  • [1] THE KEAP1-NRF2 SYSTEM IN HEALTH AND DISEASE
    Yamamoto, Masayuki
    FREE RADICAL BIOLOGY AND MEDICINE, 2023, 201 : 1 - 2
  • [2] Multifaceted Roles of the KEAP1-NRF2 System in Cancer and Inflammatory Disease Milieu
    Panda, Harit
    Wen, Huaichun
    Suzuki, Mikiko
    Yamamoto, Masayuki
    ANTIOXIDANTS, 2022, 11 (03)
  • [3] The KeAP1-NRF2 System in Cancer
    Taguchi, Keiko
    Yamamoto, Masayuki
    FRONTIERS IN ONCOLOGY, 2017, 7
  • [4] The KEAP1-NRF2 System as a Molecular Target of Cancer Treatment
    Taguchi, Keiko
    Yamamoto, Masayuki
    CANCERS, 2021, 13 (01) : 1 - 21
  • [5] The KEAP1-NRF2 System and Neurodegenerative Diseases
    Uruno, Akira
    Yamamoto, Masayuki
    ANTIOXIDANTS & REDOX SIGNALING, 2023, 38 (13) : 974 - 988
  • [6] Molecular basis of the Keap1-Nrf2 system
    Suzuki, Takafumi
    Yamamoto, Masayuki
    FREE RADICAL BIOLOGY AND MEDICINE, 2015, 88 : 93 - 100
  • [7] The Keap1-Nrf2 system and diabetes mellitus
    Uruno, Akira
    Yagishita, Yoko
    Yamamoto, Masayuki
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2015, 566 : 76 - 84
  • [8] The KEAP1-NRF2 System and Esophageal Cancer
    Hirose, Wataru
    Oshikiri, Hiroyuki
    Taguchi, Keiko
    Yamamoto, Masayuki
    CANCERS, 2022, 14 (19)
  • [9] Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression
    Nezu, Masahiro
    Suzuki, Norio
    Yamamoto, Masayuki
    AMERICAN JOURNAL OF NEPHROLOGY, 2017, 45 (06) : 473 - 483
  • [10] The Keap1-Nrf2 system as an in vivo sensor for electrophiles
    Uruno, Akira
    Motohashi, Hozumi
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2011, 25 (02): : 153 - 160