GLOBAL WEAK SOLUTIONS FOR THE COMPRESSIBLE ACTIVE LIQUID CRYSTAL SYSTEM

被引:11
作者
Chen, Gui-Qiang G. [1 ]
Majumdar, Apala [2 ]
Wang, Dehua [3 ]
Zhang, Rongfang [3 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
active hydrodynamics; active liquid crystals; compressible flows; Navier-Stokes equations; Q-tensor; global weak solutions; three-level approximations; weak convergence; GIANT NUMBER FLUCTUATIONS; NAVIER-STOKES; EXISTENCE; REGULARITY; EQUATIONS; DYNAMICS;
D O I
10.1137/17M1156897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the hydrodynamics of compressible flows of active liquid crystals in the Beris-Edwards hydrodynamics framework, using the Landau-de Gennes Q-tensor order parameter to describe liquid crystalline ordering. We prove the existence of global weak solutions for this active system in three space dimensions by the three-level approximations and weak convergence argument. New techniques and estimates are developed to overcome the difficulties caused by the active terms.
引用
收藏
页码:3632 / 3675
页数:44
相关论文
共 57 条
[1]  
[Anonymous], 1994, An introduction to the mathematical theory of the Navier-Stokes equations
[2]  
AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
[3]   Orientability and Energy Minimization in Liquid Crystal Models [J].
Ball, John M. ;
Zarnescu, Arghir .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :493-535
[4]   Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory [J].
Ball, John M. ;
Majumdar, Apala .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2010, 525 :1-11
[5]   Biphasic, Lyotropic, Active Nematics [J].
Blow, Matthew L. ;
Thampi, Sumesh P. ;
Yeomans, Julia M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (25)
[6]  
Bogovskii M. E., 1980, Proc. Sobolev Sem., V1, P5
[7]  
Borchers W., 1990, Hokkaido Math. J., V19, P67
[8]  
Chakrabarti N., 2007, J. Surface Sci. Technol, V23, P177
[9]   Simple model for active nematics:: Quasi-long-range order and giant fluctuations [J].
Chaté, H ;
Ginelli, F ;
Montagne, R .
PHYSICAL REVIEW LETTERS, 2006, 96 (18)
[10]   Global existence and regularity of solutions for active liquid crystals [J].
Chen, Gui-Qiang ;
Majumdar, Apala ;
Wang, Dehua ;
Zhang, Rongfang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) :202-239