Low-temperature resistant gel polymer electrolytes for zinc-air batteries

被引:47
作者
Wu, Jiao [1 ,2 ]
Wang, Yuchao [1 ]
Deng, Danni [2 ]
Bai, Yu [1 ]
Liu, Mengjie [1 ]
Zhao, Xin [1 ]
Xiong, Xiang [1 ]
Lei, Yongpeng [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ Forestry & Technol, Sch Mat Sci & Engn, Changsha 410004, Hunan, Peoples R China
关键词
ZN-AIR; LITHIUM; HYDROGELS; CATALYST;
D O I
10.1039/d2ta02381d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rapid development of wearable devices has put forward high requirements for stable, solid-state, flexible and even stretchable energy storage systems. Owing to their high specific energy density and volumetric energy density, metal-air batteries especially high-safety zinc-air batteries (ZABs), have attracted widespread attention. However, limited by the reduced ionic conductivity of electrolyte and the sluggish kinetics of oxygen reduction/evolution reactions at the air cathode during discharge/charge processes below 0 degrees C, the performances of ZABs severely deteriorate. Rationally designed gel polymer electrolytes (GPEs) not only offer superior mechanical performance but also provide ZABs with accelerated ion transport to boost electrochemical performance at low temperatures. Herein, the types of GPEs towards electrochemical energy systems are first summarized. And then, the research toolbox for GPEs and assembled ZABs is put forward. Next, the design strategies for low-temperature tolerant GPEs in ZABs are highlighted, such as introduction of organic solvents, alkalization of hydrogel electrolytes, construction of double-network electrolytes, etc. Finally, current challenges and perspectives are proposed. This review provides up-to-date insights on the rational design of GPEs for ZABs, which can be expanded to other metal-air batteries, metal-sulfur batteries, metal-ion batteries and so on.
引用
收藏
页码:19304 / 19319
页数:16
相关论文
共 50 条
[31]   Functionalized Nanocomposite Gel Polymer Electrolyte with Strong Alkaline-Tolerance and High Zinc Anode Stability for Ultralong-Life Flexible Zinc-Air Batteries [J].
Fan, Xiayue ;
Wang, Haozhi ;
Liu, Xiaorui ;
Liu, Jie ;
Zhao, Naiqin ;
Zhong, Cheng ;
Hu, Wenbin ;
Lu, Jun .
ADVANCED MATERIALS, 2023, 35 (07)
[32]   Effects of Crosslinker Concentration in Poly(Acrylic Acid)-KOH Gel Electrolyte on Performance of Zinc-Air Batteries [J].
Tran, Thuy Nguyen Thanh ;
Clark, Michael P. ;
Chung, Hyun-Joong ;
Ivey, Douglas G. .
BATTERIES & SUPERCAPS, 2020, 3 (05) :409-416
[33]   High-Energy-Density Zinc-Air Microbatteries with Lean PVA-KOH-K2CO3 Gel Electrolytes [J].
Zhang, Jingwen ;
Huang, Yanghang ;
Yang, Qi ;
Venkatesh, Vishal ;
Synodis, Michael ;
Pikul, James H. ;
Allen, Sue Ann Bidstrup ;
Allen, Mark G. .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (05) :6807-6816
[34]   Flexible Zinc-Air Batteries with Ampere-Hour Capacities and Wide-Temperature Adaptabilities [J].
Zhong, Xiongwei ;
Zheng, Zhiyang ;
Xu, Jiahe ;
Xiao, Xiao ;
Sun, Chongbo ;
Zhang, Mengtian ;
Ma, Jiabin ;
Xu, Baomin ;
Yu, Kuang ;
Zhang, Xuan ;
Cheng, Hui-Ming ;
Zhou, Guangmin .
ADVANCED MATERIALS, 2023, 35 (13)
[35]   Critical Role and Recent Development of Separator in Zinc-Air Batteries [J].
Wang, Meng -Yin ;
Huang, Ruo-Bei ;
Xiong, Jian-Feng ;
Tian, Jing-Hua ;
Li, Jian-Feng ;
Tian, Zhong-Qun .
ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (06)
[36]   Biodegradable Electrolyte toward Green Flexible Zinc-Air Batteries [J].
Li, Mengjiao ;
Xu, Tao ;
Huang, Lingjun ;
Hu, Zhidi ;
Zhou, Caiyuan ;
Li, Duoduo ;
Zhang, Jing ;
Hu, Enlai ;
Chen, Zhongwei .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (47) :17147-17157
[37]   Failure Mechanisms and Strategies Toward Flexible Zinc-Air Batteries [J].
Wang, Hengwei ;
Kang, Lingling ;
Wang, Keliang ;
Wei, Manhui ;
Pei, Pucheng ;
Zuo, Yayu ;
Liang, Bin .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (44)
[38]   First principles investigation of zinc-anode dissolution in zinc-air batteries [J].
Siahrostami, Samira ;
Tripkovic, Vladimir ;
Lundgaard, Keld T. ;
Jensen, Kristian E. ;
Hansen, Heine A. ;
Hummelshoj, Jens S. ;
Myrdal, Jon S. G. ;
Vegge, Tejs ;
Norskov, Jens K. ;
Rossmeisl, Jan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (17) :6416-6421
[39]   Decoding the Mechanisms of Reversibility Loss in Rechargeable Zinc-Air Batteries [J].
Yi, Zhibin ;
Li, Liangyu ;
Chan, Cheuk Kai ;
Tang, Yaxin ;
Lu, Zhouguang ;
Zhi, Chunyi ;
Chen, Qing ;
Luo, Guangfu .
NANO LETTERS, 2023, 23 (16) :7642-7649
[40]   Membranes for zinc-air batteries: Recent progress, challenges and perspectives [J].
Tsehaye, Misgina Tilahun ;
Alloin, Fannie ;
Iojoiu, Cristina ;
Tufa, Ramato Ashu ;
Aili, David ;
Fischer, Peter ;
Velizarov, Svetlozar .
JOURNAL OF POWER SOURCES, 2020, 475