Exploring geographic hotspots using topological data analysis

被引:3
|
作者
Zhang, Rui [1 ]
Lukasczyk, Jonas [2 ]
Wang, Feng [3 ]
Ebert, David [4 ]
Shakarian, Paulo [1 ]
Mack, Elizabeth A. [5 ]
Maciejewski, Ross [1 ]
机构
[1] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85281 USA
[2] Tech Univ Kaiserslautern, Dept Comp Sci, Kaiserslautern, Germany
[3] Airbnb Inc, San Francisco, CA USA
[4] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA
[5] Michigan State Univ, Dept Geog Environm & Spatial Sci, E Lansing, MI 48824 USA
关键词
KERNEL DENSITY-ESTIMATION; VISUAL ANALYTICS; MORSE COMPLEXES; TIME; VISUALIZATION; PERFORMANCE; FRAMEWORK; LEVEL; WEB;
D O I
10.1111/tgis.12816
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
This article describes a scalar field topology (SFT)-based methodology for the interactive characterization and analysis of hotspots for density fields defined on a regular grid. In contrast to the common approach of simply identifying hotspots as areas that exceed a chosen density threshold, SFT provides various data abstractions-such as the merge tree and the Morse complex-to characterize hotspots and their boundaries at multiple scales. Moreover, SFT enables the ranking of hotspots based on analyst-defined importance measures, which also makes it possible to explore hotspots using a level-of-detail approach. We present a visual analytics system to support analysts in hotspot analysis and abstraction using SFT, and we demonstrate the merit of the proposed SFT-based methodology on two crime datasets.
引用
收藏
页码:3188 / 3209
页数:22
相关论文
共 50 条
  • [21] SightBi: Exploring Cross-View Data Relationships with Biclusters
    Sun, Maoyuan
    Shaikh, Abdul Rahman
    Alhoori, Hamed
    Zhao, Jian
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (01) : 54 - 64
  • [22] EpiVECS: exploring spatiotemporal epidemiological data using cluster embedding and interactive visualization
    Mason, Lee
    Hicks, Blanaid
    Almeida, Jonas S.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [23] Exploring incomplete data using visualization techniques
    Matthias Templ
    Andreas Alfons
    Peter Filzmoser
    Advances in Data Analysis and Classification, 2012, 6 : 29 - 47
  • [24] VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data
    Chen, Wei
    Huang, Zhaosong
    Wu, Feiran
    Zhu, Minfeng
    Guan, Huihua
    Maciejewski, Ross
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (09) : 2636 - 2648
  • [25] FCAvizIR: Exploring Relational Data Set's Implications Using Metrics and Topics
    Musslin, Lola
    Bazin, Alexandre
    Huchard, Marianne
    Martin, Pierre
    Poncelet, Pascal
    Raveneau, Vincent
    Sallaberry, Arnaud
    CONCEPTUAL KNOWLEDGE STRUCTURES, CONCEPTS 2024, 2024, 14914 : 132 - 148
  • [26] Exploring incomplete data using visualization techniques
    Templ, Matthias
    Alfons, Andreas
    Filzmoser, Peter
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2012, 6 (01) : 29 - 47
  • [27] Visualizing Dynamic Gene Interactions to Reverse Engineer Gene Regulatory Networks using Topological Data Analysis
    Perkins, Miriam
    Daniels, Karen
    2017 21ST INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2017, : 384 - 389
  • [28] Correlation Analysis for Exploring Multivariate Data Sets
    Wang, Li
    Tang, Xiaoan
    Zhang, Junda
    Guan, Dongdong
    IEEE ACCESS, 2018, 6 : 44235 - 44243
  • [29] Quantifying ecosystem states and state transitions of the Upper Mississippi River System using topological data analysis
    Larson, Danelle Marie
    Bungula, Wako L.
    McKean, Casey
    Stockdill, Alaina L.
    Lee, Amber
    Miller, Frederick Forrest L.
    Davis, Killian
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (06)
  • [30] Geographic Data Science
    Andrienko, Gennady
    Andrienko, Natalia
    Weibel, Robert
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2017, 37 (05) : 15 - 17