Exploring geographic hotspots using topological data analysis

被引:3
|
作者
Zhang, Rui [1 ]
Lukasczyk, Jonas [2 ]
Wang, Feng [3 ]
Ebert, David [4 ]
Shakarian, Paulo [1 ]
Mack, Elizabeth A. [5 ]
Maciejewski, Ross [1 ]
机构
[1] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85281 USA
[2] Tech Univ Kaiserslautern, Dept Comp Sci, Kaiserslautern, Germany
[3] Airbnb Inc, San Francisco, CA USA
[4] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA
[5] Michigan State Univ, Dept Geog Environm & Spatial Sci, E Lansing, MI 48824 USA
关键词
KERNEL DENSITY-ESTIMATION; VISUAL ANALYTICS; MORSE COMPLEXES; TIME; VISUALIZATION; PERFORMANCE; FRAMEWORK; LEVEL; WEB;
D O I
10.1111/tgis.12816
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
This article describes a scalar field topology (SFT)-based methodology for the interactive characterization and analysis of hotspots for density fields defined on a regular grid. In contrast to the common approach of simply identifying hotspots as areas that exceed a chosen density threshold, SFT provides various data abstractions-such as the merge tree and the Morse complex-to characterize hotspots and their boundaries at multiple scales. Moreover, SFT enables the ranking of hotspots based on analyst-defined importance measures, which also makes it possible to explore hotspots using a level-of-detail approach. We present a visual analytics system to support analysts in hotspot analysis and abstraction using SFT, and we demonstrate the merit of the proposed SFT-based methodology on two crime datasets.
引用
收藏
页码:3188 / 3209
页数:22
相关论文
共 50 条
  • [1] Understanding Hotspots: A Topological Visual Analytics Approach
    Lukasczyk, Jonas
    Maciejewski, Ross
    Garth, Christoph
    Hagen, Hans
    23RD ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2015), 2015,
  • [2] Geographic Hotspots of Critical National Infrastructure
    Thacker, Scott
    Barr, Stuart
    Pant, Raghav
    Hall, Jim W.
    Alderson, David
    RISK ANALYSIS, 2017, 37 (12) : 2490 - 2505
  • [3] Evolution and hotspots of peer instruction: a visualized analysis using CiteSpace
    Bicheng, Diao
    Adnan, Nadia
    Harji, Madhubala Bava
    Ravindran, Latha
    EDUCATION AND INFORMATION TECHNOLOGIES, 2023, 28 (02) : 2245 - 2262
  • [4] AffectiveTDA: Using Topological Data Analysis to Improve Analysis and Explainability in Affective Computing
    Elhamdadi, Hamza
    Canavan, Shaun
    Rosen, Paul
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (01) : 769 - 779
  • [5] Characterizing the Role of Environment on Phenotypic Traits using Topological Data Analysis
    Kamruzzaman, Methun
    Kalyanaraman, Ananth
    Krishnamoorthy, Bala
    PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2016, : 487 - 488
  • [6] Topological data analysis in investment decisions
    Goel, Anubha
    Pasricha, Puneet
    Mehra, Aparna
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 147
  • [7] Bump hunting by topological data analysis
    Sommerfeld, Max
    Heo, Giseon
    Kim, Peter
    Rush, Stephen T.
    Marron, J. S.
    STAT, 2017, 6 (01): : 462 - 471
  • [8] Using Topological Analysis to Support Event-Guided Exploration in Urban Data
    Doraiswamy, Harish
    Ferreira, Nivan
    Damoulas, Theodoros
    Freire, Juliana
    Silva, Claudio T.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) : 2634 - 2643
  • [9] Computing and querying strict, approximate, and metrically refined topological relations in linked geographic data
    Regalia, Blake
    Janowicz, Krzysztof
    McKenzie, Grant
    TRANSACTIONS IN GIS, 2019, 23 (03) : 601 - 619
  • [10] Analysis of Traffic Crashes Involving Pedestrians Using Big Data: Investigation of Contributing Factors and Identification of Hotspots
    Xie, Kun
    Ozbay, Kaan
    Kurkcu, Abdullah
    Yang, Hong
    RISK ANALYSIS, 2017, 37 (08) : 1459 - 1476