Thiol-Amine-Based Solution Processing of Cu2S Thin Films for Photoelectrochemical Water Splitting

被引:15
作者
Zhang, Xi [1 ]
Yang, Wooseok [1 ]
Niu, Wenzhe [1 ]
Adams, Pardis [1 ]
Siol, Sebastian [2 ]
Wang, Zhenbin [1 ]
Tilley, S. David [1 ]
机构
[1] Univ Zurich, Dept Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Swiss Fed Labs Mat Sci & Technol, Empa, Surface Sci & Coating Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
基金
瑞士国家科学基金会;
关键词
copper sulfide; molecular inks; solution processing; photoelectrochemical; water splitting; CONVERSION; DEPOSITION; EFFICIENCY; PHOTOCATHODES; TEMPERATURE; DISSOLUTION; FABRICATION; CHALCOSITE; DJURLEITE; ALKAHEST;
D O I
10.1002/cssc.202101347
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cu2S is a promising solar energy conversion material owing to its good optical properties, elemental earth abundance, and low cost. However, simple and cheap methods to prepare phase-pure and photo-active Cu2S thin films are lacking. This study concerns the development of a cost-effective and high-throughput method that consists of dissolving high-purity commercial Cu2S powder in a thiol-amine solvent mixture followed by spin coating and low-temperature annealing to obtain phase-pure crystalline low chalcocite Cu2S thin films. After coupling with a CdS buffer layer, a TiO2 protective layer and a RuOx hydrogen evolution catalyst, the champion Cu2S photocathode gives a photocurrent density of 2.5 mA cm(-2) at -0.3 V vs. reversible hydrogen electrode (V-RHE), an onset potential of 0.42 V-RHE, and high stability over 12 h in pH 7 buffer solution under AM1.5 G simulated sunlight illumination (100 mW cm(-2)). This is the first thiol-amine-based ink deposition strategy to prepare phase-pure Cu2S thin films achieving decent photoelectrochemical performance, which will facilitate its future scalable application for solar-driven hydrogen fuel production.
引用
收藏
页码:3967 / 3974
页数:8
相关论文
共 45 条
[1]  
[Anonymous], 2015, ANGEW CHEM-GER EDIT, V127, P8498
[2]  
[Anonymous], 2008, Hydrometallurgy, DOI DOI 10.1533/9781845694616.29
[3]   Low Temperature Solution-Phase Deposition of SnS Thin Films [J].
Antunez, Priscilla D. ;
Torelli, Daniel A. ;
Yang, Fan ;
Rabuffetti, Federico A. ;
Lewis, Nathan S. ;
Brutchey, Richard L. .
CHEMISTRY OF MATERIALS, 2014, 26 (19) :5444-5446
[4]   Cathodic electrodeposition of Cu2S thin film for solar energy conversion [J].
Anuar, K ;
Zainal, Z ;
Hussein, MZ ;
Saravanan, N ;
Haslina, I .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 73 (04) :351-365
[5]   BACK ILLUMINATED HIGH-EFFICIENCY THIN-FILM CU2S-CDS SOLAR-CELLS [J].
BHAT, PK ;
DAS, SR ;
PANDYA, DK ;
CHOPRA, KL .
SOLAR ENERGY MATERIALS, 1979, 1 (3-4) :215-219
[6]   Advanced analysis of copper X-ray photoelectron spectra [J].
Biesinger, Mark C. .
SURFACE AND INTERFACE ANALYSIS, 2017, 49 (13) :1325-1334
[7]   CDS-CU2S SOLAR-CELL .1. MINORITY-CARRIER GENERATION AND TRANSPORT IN CU2S EMITTER [J].
BOER, KW .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1977, 40 (02) :355-384
[8]   THE DESIGN AND FABRICATION OF THIN-FILM CDS-CU2S CELLS OF 9.15-PERCENT CONVERSION EFFICIENCY [J].
BRAGAGNOLO, JA ;
BARNETT, AM ;
PHILLIPS, JE ;
HALL, RB ;
ROTHWARF, A ;
MEAKIN, JD .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1980, 27 (04) :645-651
[9]   Pulsed chemical vapor deposition of Cu2S into a porous TiO2 matrix [J].
Carbone, I. ;
Zhou, Q. ;
Vollbrecht, B. ;
Yang, L. ;
Medling, S. ;
Bezryadina, A. ;
Bridges, F. ;
Alers, G. B. ;
Norman, J. T. ;
Kinmen, T. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2011, 29 (05)
[10]  
Chakrabarti D.J., 1983, Bull. Alloy Phase Diagrams, V4, P254, DOI [DOI 10.1007/BF02868665, 10.1007/BF02868665]