Viscoelastic properties of vimentin originate from nonequilibrium conformational changes

被引:46
作者
Block, Johanna [1 ]
Witt, Hannes [2 ,6 ]
Candelli, Andrea [3 ,4 ,5 ]
Danes, Jordi Cabanas [3 ,4 ,5 ]
Peterman, Erwin J. G. [3 ,4 ]
Wuite, Gijs J. L. [3 ,4 ]
Janshoff, Andreas [2 ]
Koester, Sarah [1 ]
机构
[1] Univ Goettingen, Inst Xray Phys, D-37077 Gottingen, Germany
[2] Univ Goettingen, Inst Phys Chem, D-37077 Gottingen, Germany
[3] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[4] Vrije Univ Amsterdam, LaserLab, NL-1081 HV Amsterdam, Netherlands
[5] LUMICKS BV, NL-1081 HV Amsterdam, Netherlands
[6] Max Planck Inst Dynam & Self Org, Gottingen, Germany
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 06期
基金
欧洲研究理事会;
关键词
INTERMEDIATE-FILAMENTS; TAIL DOMAINS; IN-VITRO; CELL; MECHANICS; NETWORKS; BEHAVIOR; FIBERS; FIBRIN; TRANSITIONS;
D O I
10.1126/sciadv.aat1161
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structure and dynamics of living matter rely on design principles fundamentally different from concepts of traditional material science. Specialized intracellular filaments in the cytoskeleton permit living systems to divide, migrate, and grow with a high degree of variability and durability. Among the three filament systems, microfilaments, microtubules, and intermediate filaments (IFs), the physical properties of IFs and their role in cellular mechanics are the least well understood. We use optical trapping of individual vimentin filaments to investigate energy dissipation, strain history dependence, and creep behavior of stretched filaments. By stochastic and numerical modeling, we link our experimental observations to the peculiar molecular architecture of IFs. We find that individual vimentin filaments display tensile memory and are able to dissipate more than 70% of the input energy. We attribute these phenomena to distinct non equilibrium folding and unfolding of a helices in the vimentin monomers constituting the filaments.
引用
收藏
页数:10
相关论文
共 45 条
  • [1] THE FIBRILLAR SUBSTRUCTURE OF KERATIN FILAMENTS UNRAVELED
    AEBI, U
    FOWLER, WE
    REW, P
    SUN, TT
    [J]. JOURNAL OF CELL BIOLOGY, 1983, 97 (04) : 1131 - 1143
  • [2] Bendit E.G., 1960, Text. Res. J, V30, P547
  • [3] Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain
    Block, Johanna
    Witt, Hannes
    Candelli, Andrea
    Peterman, Erwin J. G.
    Wuite, Gijs J. L.
    Janshoff, Andreas
    Koester, Sarah
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (04)
  • [4] Physical properties of cytoplasmic intermediate filaments
    Block, Johanna
    Schroeder, Viktor
    Pawelzyk, Paul
    Willenbacher, Norbert
    Koester, Sarah
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2015, 1853 (11): : 3053 - 3064
  • [5] Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA
    Brouwer, Ineke
    Sitters, Gerrit
    Candelli, Andrea
    Heerema, Stephanie J.
    Heller, Iddo
    de Melo, Abinadabe J.
    Zhang, Hongshan
    Normanno, Davide
    Modesti, Mauro
    Peterman, Erwin J. G.
    Wuite, Gijs J. L.
    [J]. NATURE, 2016, 535 (7613) : 566 - +
  • [6] Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water
    Brown, Andre E. X.
    Litvinov, Rustem I.
    Discher, Dennis E.
    Purohit, Prashant K.
    Weisel, John W.
    [J]. SCIENCE, 2009, 325 (5941) : 741 - 744
  • [7] A NEW THEORY OF NON-LINEAR VISCOUS ELASTICITY
    BURTE, H
    HALSEY, G
    [J]. TEXTILE RESEARCH JOURNAL, 1947, 17 (09) : 465 - 476
  • [8] Intermediate filament structure: the bottom-up approach
    Chernyatina, Anastasia A.
    Guzenko, Dmytro
    Strelkov, Sergei V.
    [J]. CURRENT OPINION IN CELL BIOLOGY, 2015, 32 : 65 - 72
  • [9] Creep function of a single living cell
    Desprat, N
    Richert, A
    Simeon, J
    Asnacios, A
    [J]. BIOPHYSICAL JOURNAL, 2005, 88 (03) : 2224 - 2233
  • [10] Flory PJ., 1969, STAT MECH CHAIN MOL