Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics

被引:55
|
作者
Srivastava, Ashutosh [1 ]
Nagai, Tetsuro [2 ]
Srivastava, Arpita [2 ]
Miyashita, Osamu [3 ]
Tama, Florence [1 ,2 ,3 ]
机构
[1] Nagoya Univ, Inst Transformat Biomol WPI, Nagoya, Aichi 4648601, Japan
[2] Nagoya Univ, Grad Sch Sci, Dept Phys, Nagoya, Aichi 4648602, Japan
[3] RIKEN, Ctr Computat Sci, Kobe, Hyogo 6500047, Japan
关键词
hybrid modeling; integrative modeling; molecular dynamics; X-ray crystallography; SERIAL FEMTOSECOND CRYSTALLOGRAPHY; INTRINSICALLY DISORDERED PROTEINS; HIGH-RESOLUTION STRUCTURE; SMALL-ANGLE SCATTERING; MOLECULAR-DYNAMICS; CRYO-EM; CONFORMATIONAL DYNAMICS; REPLICA-EXCHANGE; CRYOELECTRON MICROSCOPY; STRUCTURE REFINEMENT;
D O I
10.3390/ijms19113401
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein structural biology came a long way since the determination of the first three-dimensional structure of myoglobin about six decades ago. Across this period, X-ray crystallography was the most important experimental method for gaining atomic-resolution insight into protein structures. However, as the role of dynamics gained importance in the function of proteins, the limitations of X-ray crystallography in not being able to capture dynamics came to the forefront. Computational methods proved to be immensely successful in understanding protein dynamics in solution, and they continue to improve in terms of both the scale and the types of systems that can be studied. In this review, we briefly discuss the limitations of X-ray crystallography in studying protein dynamics, and then provide an overview of different computational methods that are instrumental in understanding the dynamics of proteins and biomacromolecular complexes.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Protein Crystallization for X-ray Crystallography
    Dessau, Moshe A.
    Modis, Yorgo
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2011, (47):
  • [2] Combining X-ray and NMR Crystallography to Explore the Crystallographic Disorder in Salbutamol Oxalate
    Al-Ani, Aneesa J.
    Szell, Patrick M. J.
    Rehman, Zainab
    Blade, Helen
    Wheatcroft, Helen P.
    Hughes, Leslie P.
    Brown, Steven P.
    Wilson, Chick C.
    CRYSTAL GROWTH & DESIGN, 2022, 22 (08) : 4696 - 4707
  • [3] Holographic methods for X-ray and electron crystallography
    Saldin, DK
    Shneerson, VL
    Vamvakas, JA
    Wild, DL
    MICRON, 1997, 28 (04) : 321 - 329
  • [4] Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR
    Fenwick, R. Bryn
    van den Bedem, Henry
    Fraser, James S.
    Wright, Peter E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (04) : E445 - E454
  • [5] A guide to membrane protein X-ray crystallography
    Kermani, Ali A.
    FEBS JOURNAL, 2021, 288 (20) : 5788 - 5804
  • [6] Protein X-ray Crystallography and Drug Discovery
    Maveyraud, Laurent
    Mourey, Lionel
    MOLECULES, 2020, 25 (05):
  • [7] X-Ray Crystallography and the Elucidation of the Structure of DNA
    McGregor, Hugh C. J.
    Gunderman, Richard B.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2011, 196 (06) : W689 - W692
  • [8] Cryo-EM and X-ray crystallography as complementary methods for structure determination
    Stark, Holger
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E150 - E150
  • [9] Investigating Saccharomyces cerevisiae alkene reductase OYE 3 by substrate profiling, X-ray crystallography and computational methods
    Powell, Robert W., III
    Buteler, M. Pilar
    Lenka, Sunidhi
    Crotti, Michele
    Santangelo, Sara
    Burg, Matthew J.
    Bruner, Steven
    Brenna, Elisabetta
    Roitberg, Adrian E.
    Stewart, Jon D.
    CATALYSIS SCIENCE & TECHNOLOGY, 2018, 8 (19) : 5003 - 5016
  • [10] X-ray Crystallography and Computational Docking for the Detection and Development of Protein-Ligand Interactions
    Kershaw, N. M.
    Wright, G. S. A.
    Sharma, R.
    Antonyuk, S. V.
    Strange, R. W.
    Berry, N. G.
    O'Neill, P. M.
    Hasnain, S. S.
    CURRENT MEDICINAL CHEMISTRY, 2013, 20 (04) : 569 - 575