Long-Range Entanglement near a Kondo-Destruction Quantum Critical Point

被引:13
作者
Wagner, Christopher [1 ]
Chowdhury, Tathagata [1 ,2 ]
Pixley, J. H. [3 ,4 ,5 ]
Ingersent, Kevin [1 ]
机构
[1] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[2] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77a, D-50937 Cologne, Germany
[3] Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA
[4] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[5] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
RENORMALIZATION-GROUP; PHASE-TRANSITIONS; ANDERSON; IMPURITY; ENTROPY; SYSTEMS; FIELD; MODEL;
D O I
10.1103/PhysRevLett.121.147602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The numerical renormalization group is used to study quantum entanglement in the Kondo impurity model with a density of states rho(epsilon) proportional to vertical bar epsilon vertical bar(r) (0 < r < 1/2) that vanishes at the Fermi energy epsilon = 0. This nonintegrable model features a Kondo-destruction quantum critical point (QCP) separating a partially screened phase from a local-moment phase. The impurity contribution S-e(imp) to the entanglement entropy between a region of radius R around the magnetic impurity and the rest of the system reveals a length scale R* that distinguishes a region R << R* of strong critical entanglement from one R>> R* of weak entanglement. Within each phase, S-e(imp) is a universal function of R/R* with a power-law decay for R/R* >> 1. The entanglement length R* diverges on approach to the interacting QCP, showing that the critical Kondo screening cloud subsumes the entire system as the impurity becomes maximally entangled with the conduction band. This work has implications for entanglement calculations in other models and for the nature of heavy-fermion quantum criticality.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Entanglement Area Laws for Long-Range Interacting Systems
    Gong, Zhe-Xuan
    Foss-Feig, Michael
    Brandao, Fernando G. S. L.
    Gorshkov, Alexey V.
    PHYSICAL REVIEW LETTERS, 2017, 119 (05)
  • [32] Matrix product states with long-range localizable entanglement
    Wahl, T. B.
    Perez-Garcia, D.
    Cirac, J. I.
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [33] THE CRITICAL TWO-POINT FUNCTION FOR LONG-RANGE PERCOLATION ON THE HIERARCHICAL LATTICE
    Hutchcroft, Tom
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (1B) : 986 - 1002
  • [34] Destruction of long-range order by quenching of the hopping range in one dimension
    Tezuka, Masaki
    Garcia-Garcia, Antonio M.
    Cazalilla, Miguel A.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [35] Nonequilibrium critical behavior of highly disordered magnets with long-range defect correlation
    Prudnikov, P. V.
    Medvedeva, M. A.
    LOW TEMPERATURE PHYSICS, 2014, 40 (05) : 443 - 449
  • [36] Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order
    Chen, Xie
    Gu, Zheng-Cheng
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2010, 82 (15):
  • [37] Long-range fermions and critical dualities
    Chai, Noam
    Chakraborty, Soumangsu
    Goykhman, Mikhail
    Sinha, Ritam
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [38] Quasiparticles in Quantum Spin Chains with Long-Range Interactions
    Vanderstraeten, Laurens
    Van Damme, Maarten
    Buechler, Hans Peter
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [39] Long-range interacting quantum systems
    Defenu, Nicolo
    Donner, Tobias
    Macri, Tommaso
    Pagano, Guido
    Ruffo, Stefano
    Trombettoni, Andrea
    REVIEWS OF MODERN PHYSICS, 2023, 95 (03)
  • [40] Quantum chaos and ensemble inequivalence of quantum long-range Ising chains
    Russomanno, Angelo
    Fava, Michele
    Heyl, Markus
    PHYSICAL REVIEW B, 2021, 104 (09)