Long-Range Entanglement near a Kondo-Destruction Quantum Critical Point

被引:13
作者
Wagner, Christopher [1 ]
Chowdhury, Tathagata [1 ,2 ]
Pixley, J. H. [3 ,4 ,5 ]
Ingersent, Kevin [1 ]
机构
[1] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[2] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77a, D-50937 Cologne, Germany
[3] Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA
[4] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[5] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
RENORMALIZATION-GROUP; PHASE-TRANSITIONS; ANDERSON; IMPURITY; ENTROPY; SYSTEMS; FIELD; MODEL;
D O I
10.1103/PhysRevLett.121.147602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The numerical renormalization group is used to study quantum entanglement in the Kondo impurity model with a density of states rho(epsilon) proportional to vertical bar epsilon vertical bar(r) (0 < r < 1/2) that vanishes at the Fermi energy epsilon = 0. This nonintegrable model features a Kondo-destruction quantum critical point (QCP) separating a partially screened phase from a local-moment phase. The impurity contribution S-e(imp) to the entanglement entropy between a region of radius R around the magnetic impurity and the rest of the system reveals a length scale R* that distinguishes a region R << R* of strong critical entanglement from one R>> R* of weak entanglement. Within each phase, S-e(imp) is a universal function of R/R* with a power-law decay for R/R* >> 1. The entanglement length R* diverges on approach to the interacting QCP, showing that the critical Kondo screening cloud subsumes the entire system as the impurity becomes maximally entangled with the conduction band. This work has implications for entanglement calculations in other models and for the nature of heavy-fermion quantum criticality.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Entanglement dynamics in short- and long-range harmonic oscillators
    Nezhadhaghighi, M. Ghasemi
    Rajabpour, M. A.
    PHYSICAL REVIEW B, 2014, 90 (20):
  • [22] Entanglement, fractional magnetization, and long-range interactions
    Cadarso, Andrea
    Sanz, Mikel
    Wolf, Michael M.
    Cirac, J. Ignacio
    Perez-Garcia, David
    PHYSICAL REVIEW B, 2013, 87 (03):
  • [23] Critical phenomena and Kibble-Zurek scaling in the long-range quantum Ising chain
    Jaschke, Daniel
    Maeda, Kenji
    Whalen, Joseph D.
    Wall, Michael L.
    Carr, Lincoln D.
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [24] Quantum critical behaviour in systems with quenched long-range correlated impurities
    Takov, IP
    PHYSICA A, 2001, 292 (1-4): : 259 - 267
  • [25] Long-range multipartite entanglement close to a first-order quantum phase transition
    Stasinska, J.
    Rogers, B.
    Paternostro, M.
    De Chiara, G.
    Sanpera, A.
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [26] Continuously varying critical exponents in long-range quantum spin ladders
    Adelhardt, Patrick
    Schmidt, Kai P.
    SCIPOST PHYSICS, 2023, 15 (03):
  • [27] Critical Kondo destruction and the violation of the quantum-to-classical mapping of quantum criticality
    Kirchner, Stefan
    Si, Qimiao
    PHYSICA B-CONDENSED MATTER, 2009, 404 (19) : 2904 - 2907
  • [28] Quench dynamics near a quantum critical point
    De Grandi, C.
    Gritsev, V.
    Polkovnikov, A.
    PHYSICAL REVIEW B, 2010, 81 (01)
  • [29] Entanglement transition and heterogeneity in long-range quadratic Lindbladians
    de Albornoz, Alejandro Cros Carrillo
    Rose, Dominic C.
    Pal, Arijeet
    PHYSICAL REVIEW B, 2024, 109 (21)
  • [30] Generating symmetry-protected long-range entanglement
    Dutta, Shovan
    Kuhr, Stefan
    Cooper, Nigel R.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):