Entropy solution for a nonlinear elliptic problem with lower order term in Musielak-Orlicz spaces

被引:12
作者
Elarabi, R. [1 ]
Rhoudaf, M. [1 ]
Sabiki, H. [2 ]
机构
[1] Univ Moulay Ismail, Equipe EDP & Calcul Sci, Fac Sci Meknes, Meknes, Morocco
[2] Univ Ibn Tofail, Lab Anal Geometrie & Applicat, Fac Sci, BP 133, Kenitra 14000, Morocco
关键词
Nonlinear elliptic problems; Non-polynomial growth; Musielak-Orlicz spaces; Lower order terms; APPROXIMATION PROPERTIES; EXISTENCE; INEQUALITIES; EQUATIONS;
D O I
10.1007/s11587-017-0334-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall be concerned with the existence result of the following problem, {-div (a(x, u, del u)) - div(Phi(x, u)) = f in Omega, (0.1) u = 0 on partial derivative Omega, with the second term f belongs to L-1(Omega). The growth and the coercivity conditions on themonotone vector field a are prescribed by a generalized N-function M. We assume any restriction on M, therefore we work with Musielak-Orlicz spaces which are not necessarily reflexive. The lower order term Phi is a Caratheodory function satisfying only a growth condition.
引用
收藏
页码:549 / 579
页数:31
相关论文
共 24 条
[1]   EXISTENCE OF SOLUTIONS FOR UNILATERAL PROBLEMS IN L-1 INVOLVING LOWER ORDER TERMS IN DIVERGENCE FORM IN ORLICZ SPACES [J].
Aharouch, L. ;
Azroul, E. ;
Rhoudaf, M. .
JOURNAL OF APPLIED ANALYSIS, 2007, 13 (02) :151-181
[2]  
Ait Khellou M., 2014, J MATH COMPUT SCI, V4, P665
[3]  
Ait Khellou M., 2015, THESIS
[4]  
[Anonymous], USITC PUBL
[5]  
[Anonymous], 1950, Modulared Semi-Ordered Linear Spaces
[6]  
Benkirane A, 2012, THAI J MATH, V10, P371
[7]   An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces [J].
Benkirane, A ;
Elmahi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (01) :11-24
[8]  
Benkirane A., 2011, COMMENTATIONES MATHEMATICAE, V51, P109
[9]   Nonlinear parabolic inequalities in Lebesgue-Sobolev spaces with variable exponent [J].
Bennouna J. ;
El hamdaoui B. ;
Mekkour M. ;
Redwane H. .
Ricerche di Matematica, 2016, 65 (1) :93-125
[10]  
Bnilan P., 1995, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V22, P241