trans-Cinnamaldehyde Inhibits Microglial Activation and Improves Neuronal Survival against Neuroinflammation in BV2 Microglial Cells with Lipopolysaccharide Stimulation

被引:28
|
作者
Fu, Yan [1 ]
Yang, Pin [1 ]
Zhao, Yang [1 ]
Zhang, Liqing [1 ]
Zhang, Zhangang [1 ]
Dong, Xianwen [1 ]
Wu, Zhongping [2 ]
Xu, Ying [1 ]
Chen, Yongjun [3 ]
机构
[1] Shanghai Univ Tradit Chinese Med, Sch Basic Med, Dept Physiol, 1200 Cailun Rd, Shanghai 201203, Peoples R China
[2] Shanghai Univ Tradit Chinese Med, Sch Basic Med, Dept Clin & Class Med, 1200 Cailun Rd, Shanghai 201203, Peoples R China
[3] Guangzhou Univ Chinese Med, Med Coll Acu Moxi & Rehabil, South China Res Ctr Acupuncture & Moxibust, 232 Waihuan Dong Rd, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
NF-KAPPA-B; NITRIC-OXIDE; ESSENTIAL OILS; INFLAMMATION; SUPPRESSION; MECHANISMS; ALZHEIMER; CINNAMON; SYSTEM; PROLIFERATION;
D O I
10.1155/2017/4730878
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
Background. Microglial activation contributes to neuroinflammation and neuronal damage in neurodegenerative disorders including Alzheimer's and Parkinson's diseases. It has been suggested that neurodegenerative disorders may be improved if neuroinflammation can be controlled. trans-cinnamaldehyde (TCA) isolated from the stem bark of Cinnamomum cassia possesses potent anti-inflammatory capability; we thus tested whether TCA presents neuroprotective effects on improving neuronal survival by inhibiting neuroinflammatory responses in BV2 microglial cells. Results. To determine the molecular mechanism behind TCA-mediated neuroprotective effects, we assessed the effects of TCA on lipopolysaccharide-(LPS-) induced proinflammatory responses in BV2 microglial cells. While LPS potently induced the production and expression upregulation of proinflammatory mediators, including NO, iNOS, COX-2, IL-1 beta, and TNF-alpha, TCA pretreatment significantly inhibited LPS-induced production of NO and expression of iNOS, COX-2, and IL-1 beta and recovered the morphological changes in BV2 cells. TCA markedly attenuated microglial activation and neuroinflammation by blocking nuclear factor kappa B (NF-kappa B) signaling pathway. With the aid of microglia and neuron coculture system, we showed that TCA greatly reduced LPS-elicited neuronal death and exerted neuroprotective effects. Conclusions. Our results suggest that TCA, a natural product, has the potential of being used as a therapeutic agent against neuroinflammation for ameliorating neurodegenerative disorders.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6
    Liu, Yi
    Zhang, Run
    Yan, Ke
    Chen, Fanfan
    Huang, Weiyi
    Lv, Bingke
    Sun, Chengmei
    Xu, Limin
    Li, Feng
    Jiang, Xiaodan
    JOURNAL OF NEUROINFLAMMATION, 2014, 11
  • [32] Anti-inflammatory mechanism of α-viniferin regulates lipopolysaccharide-induced release of proinflammatory mediators in BV2 microglial cells
    Dilshara, Matharage Gayani
    Lee, Kyoung-Tae
    Kim, Hee Ju
    Lee, Hak-Ju
    Choi, Yung Hyun
    Lee, Chang-Min
    Kim, Lark Kyun
    Kim, Gi-Young
    CELLULAR IMMUNOLOGY, 2014, 290 (01) : 21 - 29
  • [33] Inhibitory effect of Agrimoniae Herba on lipopolysaccharide-induced nitric oxide and proinflammatory cytokine production in BV2 microglial cells
    Bae, Hyunsu
    Kim, Hye-Jeoung
    Shin, Minkyu
    Lee, Hyejung
    Yin, Chang Shik
    Ra, Jehyeon
    Kim, Jinju
    NEUROLOGICAL RESEARCH, 2010, 32 : S53 - S57
  • [34] Anti-Neuroinflammatory Effects of a Macrocyclic Peptide-Peptoid Hybrid in Lipopolysaccharide-Stimulated BV2 Microglial Cells
    Sun, Lu
    Saliba, Soraya Wilke
    Apweiler, Matthias
    Akmermer, Kamil
    Herlan, Claudine
    Grathwol, Christoph
    de Oliveira, Antonio Carlos Pinheiro
    Normann, Claus
    Jung, Nicole
    Braese, Stefan
    Fiebich, Bernd L.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (08)
  • [35] Zerumbone attenuates lipopolysaccharide-induced activation of BV-2 microglial cells via NF-κB signaling
    Gu, Min Ji
    Lee, Pyeongjae
    Ha, Sang Keun
    Hur, Jinyoung
    APPLIED BIOLOGICAL CHEMISTRY, 2020, 63 (01)
  • [36] Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-κB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells
    Yoon, Hyun-Min
    Jang, Kyung-Jun
    Han, Min Seok
    Jeong, Jin-Woo
    Kim, Gi Young
    Lee, Jai-Heon
    Choi, Yung Hyun
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2013, 5 (03) : 957 - 963
  • [37] Biochanin A attenuates LPS-induced pro-inflammatory responses and inhibits the activation of the MAPK pathway in BV2 microglial cells
    Wu, Wang-Yang
    Wu, Yang-Yang
    Huang, Huan
    He, Can
    Li, Wei-Zu
    Wang, Hui-Li
    Chen, Han-Qing
    Yin, Yan-Yan
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2015, 35 (02) : 391 - 398
  • [38] Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-κB activation in BV2 murine microglial cells
    Oh, Young Taek
    Lee, Jung Yeon
    Lee, Jinhwa
    Lee, Ju Hie
    Kim, Ja-Eun
    Ha, Joohun
    Kang, Insug
    NEUROSCIENCE LETTERS, 2010, 474 (03) : 148 - 153
  • [39] Effects of Selected Resveratrol Analogues on Activation and Polarization of Lipopolysaccharide-Stimulated BV-2 Microglial Cells
    Wang, Liang
    Zhao, Hui
    Wang, Liwen
    Tao, Yongqing
    Du, Gang
    Guan, Wenqiang
    Liu, Jianfu
    Brennan, Charles
    Ho, Chi-Tang
    Li, Shiming
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (12) : 3750 - 3757
  • [40] Anthocyanins Downregulate Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells by Suppressing the NF-κB and Akt/MAPKs Signaling Pathways
    Jeong, Jin-Woo
    Lee, Won Sup
    Shin, Sung Chul
    Kim, Gi-Young
    Choi, Byung Tae
    Choi, Yung Hyun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (01): : 1502 - 1515