Machine-Learning-Based Radiomics MRI Model for Survival Prediction of Recurrent Glioblastomas Treated with Bevacizumab

被引:11
作者
Ammari, Samy [1 ,2 ]
de Chou, Raoul Salle [1 ]
Assi, Tarek [3 ]
Touat, Mehdi [4 ,5 ]
Chouzenoux, Emilie [6 ]
Quillent, Arnaud [6 ]
Limkin, Elaine [7 ]
Dercle, Laurent [8 ]
Hadchiti, Joya [2 ]
Elhaik, Mickael [1 ]
Moalla, Salma [1 ]
Khettab, Mohamed [3 ,9 ]
Balleyguier, Corinne [1 ,2 ]
Lassau, Nathalie [1 ,2 ]
Dumont, Sarah [3 ]
Smolenschi, Cristina [3 ]
机构
[1] Univ Paris Saclay, CNRS, CEA, Biomaps,UMR1281 INSERM, F-94805 Villejuif, France
[2] Univ Paris Saclay, Gustave Roussy, Dept Imaging, F-94805 Villejuif, France
[3] Gustave Roussy Canc Campus, Dept Med Oncol, F-94805 Villejuif, France
[4] Hosp Univ Pitie Salpetriere Charles Foix, AP HP, Serv Neurol Mazarin 2, F-75013 Paris, France
[5] Sorbonne Univ, CNRS, INSERM, Inst Cerveau & Moelle Epiniere,UMR S 1127, F-75013 Paris, France
[6] Univ Paris Saclay, INRIA, Cent Supelec, Ctr Vis Numer,OPIS, F-91190 Gif Sur Yvette, France
[7] Gustave Roussy Canc Campus, Dept Radiat Oncol, 114 Rue Edouard Valliant, F-94800 Villejuif, France
[8] Columbia Univ, Irving Med Ctr, New York Presbyterian, Dept Radiol, New York, NY 10032 USA
[9] Reunion Univ, CHU La Reunion, Med Oncol Unit, F-97410 St Pierre, France
关键词
glioblastoma; bevacizumab; biomarker; radiomics; machine learning; APPARENT DIFFUSION-COEFFICIENT; ADJUVANT TEMOZOLOMIDE; IMAGING BIOMARKER; PHASE-III; PSEUDOPROGRESSION; RADIOTHERAPY; VOLUME; CLASSIFICATION; CONCOMITANT; PATTERNS;
D O I
10.3390/diagnostics11071263
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Anti-angiogenic therapy with bevacizumab is a widely used therapeutic option for recurrent glioblastoma (GBM). Nevertheless, the therapeutic response remains highly heterogeneous among GBM patients with discordant outcomes. Recent data have shown that radiomics, an advanced recent imaging analysis method, can help to predict both prognosis and therapy in a multitude of solid tumours. The objective of this study was to identify novel biomarkers, extracted from MRI and clinical data, which could predict overall survival (OS) and progression-free survival (PFS) in GBM patients treated with bevacizumab using machine-learning algorithms. In a cohort of 194 recurrent GBM patients (age range 18-80), radiomics data from pre-treatment T2 FLAIR and gadolinium-injected MRI images along with clinical features were analysed. Binary classification models for OS at 9, 12, and 15 months were evaluated. Our classification models successfully stratified the OS. The AUCs were equal to 0.78, 0.85, and 0.76 on the test sets (0.79, 0.82, and 0.87 on the training sets) for the 9-, 12-, and 15-month endpoints, respectively. Regressions yielded a C-index of 0.64 (0.74) for OS and 0.57 (0.69) for PFS. These results suggest that radiomics could assist in the elaboration of a predictive model for treatment selection in recurrent GBM patients.
引用
收藏
页数:14
相关论文
共 47 条
  • [1] ADC quantification to classify patients candidate to receive bevacizumab treatment for recurrent glioblastoma
    Asenjo Garcia, Beatriz
    Navarro Guirado, Felix
    Raya, Fatima Nagib
    Vidal Denis, Maria
    Bravo Rodriguez, Francisco
    Galan Montenegro, Pedro
    [J]. ACTA RADIOLOGICA, 2020, 61 (03) : 404 - 413
  • [2] Pseudoprogression as an adverse event of glioblastoma therapy
    Balana, Carmen
    Capellades, Jaume
    Pineda, Estela
    Estival, Anna
    Puig, Josep
    Domenech, Sira
    Verger, Eugenia
    Pujol, Teresa
    Martinez-Garcia, Maria
    Oleaga, Laura
    Velarde, JoseMaria
    Mesia, Carlos
    Fuentes, Rafael
    Marruecos, Jordi
    Del Barco, Sonia
    Villa, Salvador
    Carrato, Cristina
    Gallego, Oscar
    Gil-Gil, Miguel
    Craven-Bartle, Jordi
    Alameda, Francesc
    [J]. CANCER MEDICINE, 2017, 6 (12): : 2858 - 2866
  • [3] Apparent diffusion coefficient and tumor volume measurements help stratify progression-free survival of bevacizumab-treated patients with recurrent glioblastoma multiforme
    Buemi, Francesco
    Guzzardi, Giuseppe
    Del Sette, Bruno
    Sponghini, Andrea P.
    Matheoud, Roberta
    Soligo, Eleonora
    Trisoglio, Alessandra
    Carriero, Alessandro
    Stecco, Alessandro
    [J]. NEURORADIOLOGY JOURNAL, 2019, 32 (04) : 241 - 249
  • [4] A Radiomics Model for Predicting the Response to Bevacizumab in Brain Necrosis after Radiotherapy
    Cai, Jinhua
    Zheng, Junjiong
    Shen, Jun
    Yuan, Zhiyong
    Xie, Mingwei
    Gao, Miaomiao
    Tan, Hongqi
    Liang, Zhongguo
    Rong, Xiaoming
    Li, Yi
    Li, Honghong
    Jiang, Jingru
    Zhao, Huiying
    Argyriou, Andreas A.
    Chua, Melvin L. K.
    Tang, Yamei
    [J]. CLINICAL CANCER RESEARCH, 2020, 26 (20) : 5438 - 5447
  • [5] The role of c-Met and VEGFR2 in glioblastoma resistance to bevacizumab
    Carvalho, Bruno
    Lopes, Jose Manuel
    Silva, Roberto
    Peixoto, Joana
    Leitao, Dina
    Soares, Paula
    Fernandes, Ana Catarina
    Linhares, Paulo
    Vaz, Rui
    Lima, Jorge
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab
    Chang, Ken
    Zhang, Biqi
    Guo, Xiaotao
    Zong, Min
    Rahman, Rifaquat
    Sanchez, David
    Winder, Nicolette
    Reardon, David A.
    Zhao, Binsheng
    Wen, Patrick Y.
    Huang, Raymond Y.
    [J]. NEURO-ONCOLOGY, 2016, 18 (12) : 1680 - 1687
  • [7] Chinot OL, 2014, NEW ENGL J MED, V370, P709, DOI 10.1056/NEJMoa1308345
  • [8] FDA Drug Approval Summary: Bevacizumab (Avastin®) as Treatment of Recurrent Glioblastoma Multiforme
    Cohen, Martin H.
    Shen, Yuan Li
    Keegan, Patricia
    Pazdur, Richard
    [J]. ONCOLOGIST, 2009, 14 (11) : 1131 - 1138
  • [9] De Vleeschouwer S, 2017, GLIOBLASTOMA
  • [10] Pretreatment ADC Histogram Analysis Is a Predictive Imaging Biomarker for Bevacizumab Treatment but Not Chemotherapy in Recurrent Glioblastoma
    Ellingson, B. M.
    Sahebjam, S.
    Kim, H. J.
    Pope, W. B.
    Harris, R. J.
    Woodworth, D. C.
    Lai, A.
    Nghiemphu, P. L.
    Mason, W. P.
    Cloughesy, T. F.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (04) : 673 - 679