Solution-chemical synthesis of carbon Nanotube/ZnS nanoparticle Core/Shell heterostructures

被引:44
作者
Gu, Feng [1 ]
Li, Chunzhong [1 ]
Wang, Shufen [1 ]
机构
[1] E China Univ Sci & Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Ultrafine Mat, Shanghai 200237, Peoples R China
关键词
D O I
10.1021/ic7004858
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A facile solution-chemical method has been developed to be capable of encapsulating a multiwalled carbon nanotube (MWCNT) with ZnS nanocrystals without using any bridging species. The thickness of the ZnS shell can be tuned easily by controlling the experimental conditions. The optical properties of the MWCNT/ZnS heterostructures were investigated using UV-vis absorption and photoluminescence spectroscopy. The optical absorption spectrum indicates that the band gap of ZnS nanocrystallites is 4.2 eV. On the basis of the photoluminescence spectrum, charge transfer is thought to proceed from ZnS nanocrystals to the nanotube in the ZnS-carbon nanotube system. These special heterostructures are very easily encapsulated within a uniform silica layer by a modified-Stober process and still show better stability even after heat treatment at 400 degrees C, which makes them appealing for practical applications in biochemistry and biodiagnostics.
引用
收藏
页码:5343 / 5348
页数:6
相关论文
共 66 条
[1]   Biomineralization - Naturally aligned nanocrystals [J].
Alivisatos, AP .
SCIENCE, 2000, 289 (5480) :736-737
[2]   Bioelectrochemical single-walled carbon nanotubes [J].
Azamian, BR ;
Davis, JJ ;
Coleman, KS ;
Bagshaw, CB ;
Green, MLH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (43) :12664-12665
[3]   Synthesis and characterization of carbon nanotube-nanocrystal heterostructures [J].
Banerjee, S ;
Wong, SS .
NANO LETTERS, 2002, 2 (03) :195-200
[4]   In situ quantum dot growth on multiwalled carbon nanotubes [J].
Banerjee, S ;
Wong, SS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (34) :10342-10350
[5]   Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J].
Banfield, JF ;
Welch, SA ;
Zhang, HZ ;
Ebert, TT ;
Penn, RL .
SCIENCE, 2000, 289 (5480) :751-754
[6]   Silica particles:: A novel drug-delivery system [J].
Barbé, C ;
Bartlett, J ;
Kong, LG ;
Finnie, K ;
Lin, HQ ;
Larkin, M ;
Calleja, S ;
Bush, A ;
Calleja, G .
ADVANCED MATERIALS, 2004, 16 (21) :1959-1966
[7]   Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices [J].
Bhattacharyya, S ;
Kymakis, E ;
Amaratunga, GAJ .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4819-4823
[8]   Synthesis of ultra-small ZnS nanoparticles by solid-solid reaction in the confined space of AOT reversed micelles [J].
Calandra, P ;
Longo, A ;
Liveri, VT .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (01) :25-30
[9]   Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method [J].
Cao, J ;
Sun, JZ ;
Hong, J ;
Li, HY ;
Chen, HZ ;
Wang, M .
ADVANCED MATERIALS, 2004, 16 (01) :84-+
[10]   Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres [J].
Chan, Y ;
Zimmer, JP ;
Stroh, M ;
Steckel, JS ;
Jain, RK ;
Bawendi, MG .
ADVANCED MATERIALS, 2004, 16 (23-24) :2092-+