p-adic Arakelov theory

被引:14
作者
Besser, A [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
Arakelov theory; p-adic height pairings; p-adic integration; p-adic Green functions;
D O I
10.1016/j.jnt.2004.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the p-adic analogue of Arakelov intersection theory on arithmetic surfaces. The intersection pairing in an extension of the p-adic height pairing for divisors of degree 0 in the form described by Coleman and Gross. It also uses Coleman integration and is related to work of Colmez on p-adic Green functions. We introduce the p-adic version of a metrized line bundle and define the metric on the determinant of its cohomology in the style of Faltings. We also prove analogues of the Adjunction formula and the Riemann-Roch formula. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:318 / 371
页数:54
相关论文
共 19 条
[1]  
Arakelov S. Ju., 1974, Izv. Akad. Nauk SSSR Ser. Mat., V38, P1179
[2]  
Besser A, 2004, CRM PROC & LECT NOTE, V36, P13
[3]   Coleman integration using the Tannakian formalism [J].
Besser, A .
MATHEMATISCHE ANNALEN, 2002, 322 (01) :19-48
[4]   Syntomic regulators and p-adic integration II:: K2 of curves [J].
Besser, A .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) :335-359
[5]   P-ADIC REGULATORS ON CURVES AND SPECIAL VALUES OF P-ADIC L-FUNCTIONS [J].
COLEMAN, R ;
DESHALIT, E .
INVENTIONES MATHEMATICAE, 1988, 93 (02) :239-266
[6]   VECTORIAL EXTENSIONS OF JACOBIANS [J].
COLEMAN, RF .
ANNALES DE L INSTITUT FOURIER, 1990, 40 (04) :769-783
[7]   TORSION POINTS ON CURVES AND P-ADIC ABELIAN-INTEGRALS [J].
COLEMAN, RF .
ANNALS OF MATHEMATICS, 1985, 121 (01) :111-168
[8]   THE UNIVERSAL VECTORIAL BI-EXTENSION AND P-ADIC HEIGHTS [J].
COLEMAN, RF .
INVENTIONES MATHEMATICAE, 1991, 103 (03) :631-650
[9]  
COLEMAN RF, 1989, COMPOS MATH, V72, P205
[10]  
Coleman Robert F., 1989, Adv. Stud. Pure Math., V17, P73