Bitcoin Transaction Forecasting With Deep Network Representation Learning

被引:12
|
作者
Wei, Wenqi [1 ]
Zhang, Qi [2 ]
Liu, Ling [1 ]
机构
[1] Georgia Inst Technol, Sch Comp Sci, Atlanta, GA 30332 USA
[2] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
Bitcoin; Forecasting; Predictive models; Feature extraction; Peer-to-peer computing; Neural networks; Data models; Network representation learning; large-scale and dynamic graph mining; transaction forecasting as a service;
D O I
10.1109/TETC.2020.3010464
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bitcoin and its decentralized computing paradigm for digital currency trading are one of the most disruptive technology in the 21st century. This article presents a novel approach to developing a Bitcoin transaction forecast model, DLForecast, by leveraging deep neural networks for learning Bitcoin transaction network representations. DLForecast makes three original contributions. First, we explore three interesting properties between Bitcoin transaction accounts: topological connectivity pattern of Bitcoin accounts, transaction amount pattern, and transaction dynamics. Second, we construct a time-decaying reachability graph and a time-decaying transaction pattern graph, aiming at capturing different types of spatial-temporal Bitcoin transaction patterns. Third, we employ node embedding on both graphs and develop a Bitcoin transaction forecasting system between user accounts based on historical transactions with built-in time-decaying factor. To maintain an effective transaction forecasting performance, we leverage the multiplicative model update (MMU) ensemble to combine prediction models built on different transaction features extracted from each corresponding Bitcoin transaction graph. Evaluated on real-world Bitcoin transaction data, we show that our spatial-temporal forecasting model is efficient with fast runtime and effective with forecasting accuracy over 60 percent and improves the prediction performance by 50 percent when compared to forecasting model built on the static graph baseline.
引用
收藏
页码:1359 / 1371
页数:13
相关论文
共 50 条
  • [31] Dynamic Feature Selection for Solar Irradiance Forecasting Based on Deep Reinforcement Learning
    Lyu, Cheng
    Eftekharnejad, Sara
    Basumallik, Sagnik
    Xu, Chongfang
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (01) : 533 - 543
  • [32] A Deep Learning Model Using Transformer Network and Expert Optimizer for an Hour Ahead Wind Power Forecasting
    Thiyagarajan, Anushalini
    Revathi, B. Sri
    Suresh, Vishnu
    IEEE ACCESS, 2025, 13 : 33935 - 33955
  • [33] Network Representation Learning: From Traditional Feature Learning to Deep Learning
    Sun, Ke
    Wang, Lei
    Xu, Bo
    Zhao, Wenhong
    Teng, Shyh Wei
    Xia, Feng
    IEEE ACCESS, 2020, 8 : 205600 - 205617
  • [34] Forecasting Bitcoin Volatility Using Hybrid GARCH Models with Machine Learning
    Zahid, Mamoona
    Iqbal, Farhat
    Koutmos, Dimitrios
    RISKS, 2022, 10 (12)
  • [35] Unveiling bitcoin network attack using deep reinforcement learning with Boltzmann exploration
    Shetty, Monali
    Tamane, Sharvari
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2025, 18 (01) : 20 - 20
  • [36] Forecasting Transportation Network Speed Using Deep Capsule Networks With Nested LSTM Models
    Ma, Xiaolei
    Zhong, Houyue
    Li, Yi
    Ma, Junyan
    Cui, Zhiyong
    Wang, Yinhai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (08) : 4813 - 4824
  • [37] Solar Power Forecasting Using Deep Learning Techniques
    Elsaraiti, Meftah
    Merabet, Adel
    IEEE ACCESS, 2022, 10 : 31692 - 31698
  • [38] Deep Learning Models for Time Series Forecasting: A Review
    Li, Wenxiang
    Law, K. L. Eddie
    IEEE ACCESS, 2024, 12 : 92306 - 92327
  • [39] Photovoltaic Power Forecasting With a Hybrid Deep Learning Approach
    Li, Gangqiang
    Xie, Sen
    Wang, Bozhong
    Xin, Jiantao
    Li, Yunfeng
    Du, Shengnan
    IEEE ACCESS, 2020, 8 (08) : 175871 - 175880
  • [40] Technology Forecasting Using Deep Learning Neural Network: Taking the Case of Robotics
    Gui, Meizeng
    Xu, Xueguo
    IEEE ACCESS, 2021, 9 (53306-53316) : 53306 - 53316