N-covers of hyperelliptic curves

被引:3
作者
Bruin, N [1 ]
Flynn, EV
机构
[1] Simon Fraser Univ, Dept Math & Stat, Burnaby, BC V5A 1S6, Canada
[2] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England
关键词
D O I
10.1017/S0305004102006448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a hyperelliptic curve e of genus g with a divisor class of order n = g + 1, we shall consider an associated covering collection of curves D-delta, each of genus g(2). We describe, up to isogeny, the Jacobian of each D-delta via a map from D-delta to e, and two independent maps from D-delta to a curve of genus g(g - 1)/2. For some curves, this allows covering techniques that depend on arithmetic data of number fields of smaller degree than standard 2-coverings; we illustrate this by using 3-coverings to find all Q-rational points on a curve of genus 2 for which 2-covering techniques would be impractical.
引用
收藏
页码:397 / 405
页数:9
相关论文
共 18 条
[1]   The diophantine equations x2±y4=±z6 and x2+y8=z3 [J].
Bruin, N .
COMPOSITIO MATHEMATICA, 1999, 118 (03) :305-321
[2]  
BRUIN N, TRANSCRIPTS COMPUTAT, P1
[3]  
BRUIN N, CHABANTY METHODS MET, P2
[4]  
BRUIN N, KASH BASED PROGRAM P
[5]  
CASSELS JWS, 1991, 24 LMSST
[6]  
CASSELS JWS, 1996, 230 LMSLNS
[7]  
Chabauty C, 1941, CR HEBD ACAD SCI, V212, P1022
[8]   KANT V4 [J].
Daberkow, M ;
Fieker, C ;
Kluners, J ;
Pohst, M ;
Roegner, K ;
Schornig, M ;
Wildanger, K .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :267-283
[9]   Computing the p-Selmer group of an elliptic curve [J].
Djabri, Z ;
Schaefer, EF ;
Smart, NP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5583-5597
[10]   A flexible method for applying Chabauty's Theorem [J].
Flynn, EV .
COMPOSITIO MATHEMATICA, 1997, 105 (01) :79-94