Review: High-performance computing to detect epistasis in genome scale data sets

被引:33
作者
Upton, Alex [1 ]
Trelles, Oswaldo [2 ]
Antonio Cornejo-Garcia, Jose [3 ]
Richard Perkins, James [3 ]
机构
[1] Univ Malaga, Dept Comp Architecture, Bitlab Res Grp, E-29071 Malaga, Spain
[2] Univ Malaga, Dept Comp Architecture, E-29071 Malaga, Spain
[3] Reg Univ Hosp Malaga, IBIMA Res Lab, Malaga, Spain
关键词
epistasis; SNP-interactions; high-performance computing; disease marker; biomarker; genome sequencing; genotyping; GENE-GENE INTERACTIONS; MULTIFACTOR-DIMENSIONALITY REDUCTION; SNP-SNP INTERACTIONS; EXACERBATED RESPIRATORY-DISEASE; ASSOCIATION INTERACTION NETWORK; WIDE ASSOCIATION; EVOLUTIONAL PROPERTIES; LOGISTIC-REGRESSION; VARIABLE SELECTION; SURVIVAL PROGNOSIS;
D O I
10.1093/bib/bbv058
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
It is becoming clear that most human diseases have a complex etiology that cannot be explained by single nucleotide polymorphisms (SNPs) or simple additive combinations; the general consensus is that they are caused by combinations of multiple genetic variations. The limited success of some genome-wide association studies is partly a result of this focus on single genetic markers. A more promising approach is to take into account epistasis, by considering the association of multiple SNP interactions with disease. However, as genomic data continues to grow in resolution, and genome and exome sequencing become more established, the number of combinations of variants to consider increases rapidly. Two potential solutions should be considered: the use of high-performance computing, which allows us to consider a larger number of variables, and heuristics to make the solution more tractable, essential in the case of genome sequencing. In this review, we look at different computational methods to analyse epistatic interactions within disease-related genetic data sets created by microarray technology. We also review efforts to use epistatic analysis results to produce biomarkers for diagnostic tests and give our views on future directions in this field in light of advances in sequencing technology and variants in non-coding regions.
引用
收藏
页码:368 / 379
页数:12
相关论文
共 126 条
[11]   Development of a genetic marker set to diagnose aspirin-exacerbated respiratory disease in a genome-wide association study [J].
Chang, H. S. ;
Shin, S. W. ;
Lee, T. H. ;
Bae, D. J. ;
Park, J. S. ;
Kim, Y. H. ;
Uh, S. T. ;
Choi, B. W. ;
Kim, M. K. ;
Choi, I. S. ;
Park, B. L. ;
Shin, H. D. ;
Park, C. S. .
PHARMACOGENOMICS JOURNAL, 2015, 15 (04) :316-321
[12]   Investigation of Epistasis Between DAOA and 5HTR1A Variants on Clinical Outcomes in Patients with Schizophrenia [J].
Chiesa, Alberto ;
Lia, Loredana ;
Han, Changsu ;
Lee, Soo-Jung ;
Pae, Chi-Un ;
Serretti, Alessandro .
GENETIC TESTING AND MOLECULAR BIOMARKERS, 2013, 17 (06) :504-507
[13]   Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data [J].
Cooper, Gregory M. ;
Shendure, Jay .
NATURE REVIEWS GENETICS, 2011, 12 (09) :628-640
[14]   Detecting gene-gene interactions that underlie human diseases [J].
Cordell, Heather J. .
NATURE REVIEWS GENETICS, 2009, 10 (06) :392-404
[15]   Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease [J].
Cruchaga, Carlos ;
Karch, Celeste M. ;
Jin, Sheng Chih ;
Benitez, Bruno A. ;
Cai, Yefei ;
Guerreiro, Rita ;
Harari, Oscar ;
Norton, Joanne ;
Budde, John ;
Bertelsen, Sarah ;
Jeng, Amanda T. ;
Cooper, Breanna ;
Skorupa, Tara ;
Carrell, David ;
Levitch, Denise ;
Hsu, Simon ;
Choi, Jiyoon ;
Ryten, Mina ;
Sassi, Celeste ;
Bras, Jose ;
Gibbs, J. Raphael ;
Hernandez, Dena G. ;
Lupton, Michelle K. ;
Powell, John ;
Forabosco, Paola ;
Ridge, Perry G. ;
Corcoran, Christopher D. ;
Tschanz, Joann T. ;
Norton, Maria C. ;
Munger, Ronald G. ;
Schmutz, Cameron ;
Leary, Maegan ;
Demirci, F. Yesim ;
Bamne, Mikhil N. ;
Wang, Xingbin ;
Lopez, Oscar L. ;
Ganguli, Mary ;
Medway, Christopher ;
Turton, James ;
Lord, Jenny ;
Braae, Anne ;
Barber, Imelda ;
Brown, Kristelle ;
Pastor, Pau ;
Lorenzo-Betancor, Oswaldo ;
Brkanac, Zoran ;
Scott, Erick ;
Topol, Eric ;
Morgan, Kevin ;
Rogaeva, Ekaterina .
NATURE, 2014, 505 (7484) :550-+
[16]   SNPsyn: detection and exploration of SNP-SNP interactions [J].
Curk, Tomaz ;
Rot, Gregor ;
Zupan, Blaz .
NUCLEIC ACIDS RESEARCH, 2011, 39 :W444-W449
[17]   OpenMP: An industry standard API for shared-memory programming [J].
Dagum, L ;
Menon, R .
IEEE COMPUTATIONAL SCIENCE & ENGINEERING, 1998, 5 (01) :46-55
[18]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158
[19]   Surfing a genetic association interaction network to identify modulators of antibody response to smallpox vaccine [J].
Davis, N. A. ;
Crowe, J. E., Jr. ;
Pajewski, N. M. ;
McKinney, B. A. .
GENES AND IMMUNITY, 2010, 11 (08) :630-636
[20]   Encore: Genetic Association Interaction Network Centrality Pipeline and Application to SLE Exome Data [J].
Davis, Nicholas A. ;
Lareau, Caleb A. ;
White, Bill C. ;
Pandey, Ahwan ;
Wiley, Graham ;
Montgomery, Courtney G. ;
Gaffney, Patrick M. ;
McKinney, B. A. .
GENETIC EPIDEMIOLOGY, 2013, 37 (06) :614-621