A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems

被引:27
|
作者
Wang, Hongfeng [1 ,2 ]
Yang, Shengxiang [3 ,4 ]
Ip, W. H. [5 ]
Wang, Dingwei [1 ,2 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Peoples R China
[3] Brunel Univ, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
[4] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Jiangsu, Peoples R China
[5] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Kowloon, Hong Kong, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
memetic computing; memetic algorithm; particle swarm optimisation; dynamic multi-modal optimisation problem; speciation; local search; DIFFERENTIAL EVOLUTION; GENETIC ALGORITHM; MULTIPLE OPTIMA; STRATEGY; MINIMA; MODEL;
D O I
10.1080/00207721.2011.605966
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many real-world optimisation problems are both dynamic and multi-modal, which require an optimisation algorithm not only to find as many optima under a specific environment as possible, but also to track their moving trajectory over dynamic environments. To address this requirement, this article investigates a memetic computing approach based on particle swarm optimisation for dynamic multi-modal optimisation problems (DMMOPs). Within the framework of the proposed algorithm, a new speciation method is employed to locate and track multiple peaks and an adaptive local search method is also hybridised to accelerate the exploitation of species generated by the speciation method. In addition, a memory-based re-initialisation scheme is introduced into the proposed algorithm in order to further enhance its performance in dynamic multi-modal environments. Based on the moving peaks benchmark problems, experiments are carried out to investigate the performance of the proposed algorithm in comparison with several state-of-the-art algorithms taken from the literature. The experimental results show the efficiency of the proposed algorithm for DMMOPs.
引用
收藏
页码:1268 / 1283
页数:16
相关论文
共 50 条
  • [2] Particle swarm optimisation for dynamic optimisation problems: a review
    Ahmad Rezaee Jordehi
    Neural Computing and Applications, 2014, 25 : 1507 - 1516
  • [3] Multi-guide particle swarm optimisation archive management strategies for dynamic optimisation problems
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    SWARM INTELLIGENCE, 2022, 16 (02) : 143 - 168
  • [4] Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [5] A dynamic Gaussian process surrogate model-assisted particle swarm optimisation algorithm for expensive structural optimisation problems
    Luo, Danni
    Huang, Jie
    Su, Guoshao
    Tao, Honghui
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2023, 27 (01) : 416 - 436
  • [6] A memetic particle swarm optimization algorithm for multimodal optimization problems
    Wang, Hongfeng
    Moon, Ilkyeong
    Yang, Shenxiang
    Wang, Dingwei
    INFORMATION SCIENCES, 2012, 197 : 38 - 52
  • [7] Particle swarm optimisation for discrete optimisation problems: a review
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (02) : 243 - 258
  • [8] Particle swarm optimisation for discrete optimisation problems: a review
    Ahmad Rezaee Jordehi
    Jasronita Jasni
    Artificial Intelligence Review, 2015, 43 : 243 - 258
  • [9] Multi-region particle swarm optimisation algorithm
    Fan, Ji-Shan
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 44 (02) : 117 - 123
  • [10] Memetic Fitness Euclidean-Distance Particle Swarm Optimization for Multi-modal Optimization
    Liang, J. J.
    Qu, Bo Yang
    Ma, Song Tao
    Suganthan, Ponnuthurai Nagaratnam
    BIO-INSPIRED COMPUTING AND APPLICATIONS, 2012, 6840 : 378 - +