Highly oriented hematite nanorods arrays for photoelectrochemical water splitting

被引:84
作者
de Carvalho, Vitor A. N. [1 ]
Luz, Roberto A. de S. [1 ]
Lima, Bruno H. [2 ]
Crespilho, Frank N. [1 ,3 ]
Leite, Edson R. [2 ]
Souza, Flavio L. [1 ]
机构
[1] Univ Fed ABC, Ctr Ciencias Nat & Humanas, Grp Mat & Metodos Avancados, BR-09090400 Santo Andre, SP, Brazil
[2] PPGCEM Univ Fed Sao Carlos, BR-13565905 Sao Carlos, SP, Brazil
[3] Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Iron oxide; Nanorod array; Electrochemical properties; Water splitting; OXYGEN-EVOLVING CATALYST; THIN-FILMS; CHARGE-TRANSFER; SURFACE-STATES; TIO2; ALPHA-FE2O3; EVOLUTION; SEMICONDUCTORS; PHOTOANODES; OXIDE;
D O I
10.1016/j.jpowsour.2012.01.093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report an oriented hematite undoped photanode synthesized by single chemical route step at low temperature and with a short reaction time. Fluorine-doped tin oxide (FTO) electrodes modified with hematite nanorod (450 nm of thickness) showed a photocurrent with 0.9 mA cm(-2) at 0.4 V vs Ag/AgCl. Also, we have done electrochemical characterizations under dark conditions in order to understand the catalytic properties of the photoanode. Based on cyclic voltammetry results we have proposed a new mechanism to explain the evolution of molecular oxygen onto oriented hematite surfaces, in which is not inconsistent with thermodynamical parameters extracted from the Pourbaix diagram. A chemical interaction between OH- and iron oxide from the surface suggested that the chemical reaction is first governed by oxy-hydroxides on the electrode/electrolyte interface. In other word, molecular oxygen evolution is preceded by the formation of oxy-hydroxide groups, a slow and possibly limiting step. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:525 / 529
页数:5
相关论文
共 69 条
[11]   Spectroelectrochemical investigation of surface states in nanostructured TiO2 electrodes [J].
Boschloo, G ;
Fitzmaurice, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (12) :2228-2231
[12]  
Brett C., 1993, Electrochemistry: Principles, Methods, and Applications
[13]   Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:: Nanostructure-directing effect of Si-doping [J].
Cesar, I ;
Kay, A ;
Martinez, JAG ;
Grätzel, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (14) :4582-4583
[14]   Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting [J].
Cesar, Ilkay ;
Sivula, Kevin ;
Kay, Andreas ;
Zboril, Radek ;
Graetzel, Michael .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (02) :772-782
[15]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[16]   Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles [J].
Cherepy, NJ ;
Liston, DB ;
Lovejoy, JA ;
Deng, HM ;
Zhang, JZ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (05) :770-776
[17]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[18]   Enzyme immobilisation on electroactive nanostructured membranes (ENM): Optimised architectures for biosensing [J].
Crespilho, Frank N. ;
Ghica, M. Emilia ;
Gouveia-Caridade, Carla ;
Oliveira, Osvaldo N., Jr. ;
Brett, Christopher M. A. .
TALANTA, 2008, 76 (04) :922-928
[19]   Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger [J].
Dotan, Hen ;
Sivula, Kevin ;
Graetzel, Michael ;
Rothschild, Avner ;
Warren, Scott C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :958-964
[20]   THE PREPARATION AND THERMODYNAMIC PROPERTIES OF FE(II)-FE(III) HYDROXIDE-CARBONATE (GREEN-RUST-1) - POURBAIX DIAGRAM OF IRON IN CARBONATE-CONTAINING AQUEOUS-MEDIA [J].
DRISSI, SH ;
REFAIT, P ;
ABDELMOULA, M ;
GENIN, JMR .
CORROSION SCIENCE, 1995, 37 (12) :2025-2041