DESCENT FOR DIFFERENTIAL GALOIS THEORY OF DIFFERENCE EQUATIONS: CONFLUENCE AND q-DEPENDENCE

被引:15
作者
Di Vizio, Lucia [1 ]
Hardouin, Charlotte [2 ]
机构
[1] Univ Versailles St Quentin, Math Lab, F-78035 Versailles, France
[2] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 9, France
关键词
linear difference equations; Galois theory; hypertranscendence; MODEL-THEORY; FIELDS;
D O I
10.2140/pjm.2012.256.79
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper contains two results that generalize and improve constructions of Hardouin and Singer. In the case of a derivation, we prove that the parametrized Galois theory for difference equations constructed by Hardouin and Singer can be descended from a differentially closed to an algebraically closed field. In the second part of the paper, we show that the theory can be applied to deformations of q-series to study the differential dependence with respect to x d/dx and q d/dq. We show that the parametrized difference Galois group (with respect to a convenient derivation defined in the text) of the Jacobi Theta function can be considered as the Galoisian counterpart of the heat equation.
引用
收藏
页码:79 / 104
页数:26
相关论文
共 31 条
  • [1] [Anonymous], 2005, PANORAMAS SYNTHESES
  • [2] [Anonymous], GRUNDLEHREN MATH WIS
  • [3] [Anonymous], 1973, PURE APPL MATH
  • [4] DIFFERENTIAL ALGEBRAIC GROUPS
    CASSIDY, PJ
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1972, 94 (03) : 891 - &
  • [5] Cohn RM., 1965, Difference Algebra
  • [6] Deligne P., 1990, Birkhauser, V87, P111, DOI [10.1007/978-0-8176-4575-53, 10, DOI 10.1007/978-0-8176-4575-53]
  • [7] Di Vizio L., 2011, ARXIV12051696
  • [8] Di Vizio L., 2011, ARXIV12051692
  • [9] Di Vizio L., 2011, ARXIV12051694
  • [10] Curvatures, generic Galois groups and D-groupoid of a q-difference system
    Di Vizio, Lucia
    Hardouin, Charlotte
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (17-18) : 951 - 954