Extensions and rank-2 vector bundles on irreducible nodal curves

被引:0
作者
Arcara, D [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
vector bundles; singular curves; moduli spaces;
D O I
10.1142/S0129167X05003284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize Bertram's work on rank two vector bundles to an irreducible projective nodal curve C. We use the natural rational map Phi(L) : P(Ext(C)(1) (L, O-C)) -> SUC (2, L) subset of C SUC (2, L) defined by Phi(L) ([0 -> O-C -> E -> L -> 0]) = E to study a compactification SUC (2, L) of the moduli space SUC (2, L) of semi-stable vector bundles of rank 2 and determinant L on C. In particular, we resolve the indeterminancy of Phi(L) in the case deg L = 3, 4 via a sequence of three blow-ups with smooth centers.
引用
收藏
页码:1081 / 1118
页数:38
相关论文
共 19 条
  • [1] ARCARA D, 2004, EXTENSION SPACES STA
  • [2] Atiyah M. F., 1957, Proceedings of the London Mathematical Society, V7, P414, DOI 10.1112/plms/s3-7.1.414
  • [3] ATIYAH MF, 1955, P LOND MATH SOC, V5, P407
  • [4] BARDELLI F, 1989, LECT RIEMANN SURFACE, P648
  • [5] BERTRAM A, 1992, J DIFFER GEOM, V35, P429
  • [6] GENERALIZED PARABOLIC BUNDLES AND APPLICATIONS TO TORSION-FREE SHEAVES ON NODAL CURVES
    BHOSLE, U
    [J]. ARKIV FOR MATEMATIK, 1992, 30 (02): : 187 - 215
  • [7] Picard groups of the moduli spaces of vector bundles
    Bhosle, UN
    [J]. MATHEMATISCHE ANNALEN, 1999, 314 (02) : 245 - 263
  • [8] Generalized parabolic bundles and applications .2.
    Bhosle, UN
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1996, 106 (04): : 403 - 420
  • [9] Picard groups of the moduli spaces of semistable sheaves I
    Bhosle, UN
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (02): : 107 - 122
  • [10] BHOSLE UN, 1990, MODULI TORSIONFREE S