Stochastic representation of mesoscale eddy effects in coarse -resolution barotropic models

被引:17
作者
Bauer, Werner [1 ]
Chandramouli, Pranav [1 ]
Li, Long [1 ]
Memin, Etienne [1 ]
机构
[1] INRIA, IRMAR, Campus Univ Beaulieu, F-35042 Rennes, France
关键词
Stochastic modeling; Mesoscale eddies; Geostrophic turbulence; Wind-driven circulation; LOCATION UNCERTAINTY; GEOPHYSICAL FLOWS; CIRCULATION; DYNAMICS; TURBULENCE; TRANSPORT; REDUCTION; VISCOSITY;
D O I
10.1016/j.ocemod.2020.101646
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A stochastic representation based on a physical transport principle is proposed to account for mesoscale eddy effects on the evolution of the large-scale flow. This framework arises from a decomposition of the Lagrangian velocity into a smooth (in time) component and a highly oscillating term. One important characteristic of this random model is that it conserves the energy of any transported scalar. Such an energy -preserving representation is tested for the coarse simulation of a barotropic circulation in a shallow ocean basin, driven by a symmetric double -gyres wind forcing. The empirical spatial correlation of the random small-scale velocity is estimated from data of an eddy -resolving simulation. After reaching a turbulent equilibrium state, a statistical analysis of tracers shows that the proposed random model enables us to reproduce accurately, on a coarse mesh, the local structures of the first four statistical moments (mean, variance, skewness and kurtosis) of the high -resolution eddy -resolved data.
引用
收藏
页数:17
相关论文
共 64 条
[1]  
[Anonymous], 2014, ENCY MATH ITS APPL
[2]  
[Anonymous], 1997, CAMBRIDGE STUDIES AD
[3]  
ARAKAWA A, 1981, MON WEATHER REV, V109, P18, DOI 10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO
[4]  
2
[5]  
Arakawa A., 1977, Methods Comput. Phys, V17, P173, DOI [DOI 10.1016/B978-0-12-460817-7.50009-4, 10.1016/B978-0-12-460817-7.50009-4]
[6]   On Eddy Viscosity, Energy Cascades, and the Horizontal Resolution of Gridded Satellite Altimeter Products [J].
Arbic, Brian K. ;
Polzin, Kurt L. ;
Scott, Robert B. ;
Richman, James G. ;
Shriver, Jay F. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2013, 43 (02) :283-300
[7]  
Bauer W., 2020, J PHYS OCEANOGR, V50, P983
[8]   Random-forcing model of the mesoscale oceanic eddies [J].
Berloff, PS .
JOURNAL OF FLUID MECHANICS, 2005, 529 :71-95
[9]   Large-scale flows under location uncertainty: a consistent stochastic framework [J].
Chapron, B. ;
Derian, P. ;
Memin, E. ;
Resseguier, V. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (710) :251-260
[10]   Optimisation of an idealised ocean model, stochastic parameterisation of sub-grid eddies [J].
Cooper, Fenwick C. ;
Zanna, Laure .
OCEAN MODELLING, 2015, 88 :38-53