On the Dynamics of Transmission Capacity and Load Loss during Cascading Failures in Power Grids

被引:0
作者
Shuvro, Rezoan A. [1 ]
Das, Pankaz [1 ]
Rahnamay-Naeini, Mahshid [2 ]
Sorrentino, Francesco [3 ]
Hayat, Majeed M. [1 ]
机构
[1] Marquette Univ, Dept Elect & Comp Engn, Milwaukee, WI 53233 USA
[2] Univ S Florida, Elect Engn Dept, Tampa, FL 33620 USA
[3] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
来源
PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE) | 2019年
基金
美国国家科学基金会;
关键词
Cascading failures; load loss; average transmission capacity loss; Monte-Carlo simulations; Markov chain;
D O I
10.1109/isgteurope.2019.8905451
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, a novel analytical model is proposed to predict the average transmission-capacity loss and load loss during a cascading failure as a function of time and their steady state values. Cascading failures in the power grid are described using a Markov-chain approach, in which the state transition probabilities depend on the number and capacities of the failed lines. The transition matrix is characterized parametrically using Monte Carlo simulations of cascading failures in the power grid. The severity of cascading failure is estimated using two metrics: the expected number of transmission-line failures and the amount of load shedding/load loss (inferred from the average transmission capacity loss) in the steady state. These two metrics provide critical information regarding the severity of a cascading failure in a power grid (in terms of both the distribution of blackout sizes and the amounts of load shedding). One of the benefits of this model is that it enables the understanding of the effect of initial failures and of the operating parameters of the power grid on cascading failures.
引用
收藏
页数:5
相关论文
共 18 条
  • [11] Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
    Korkali, Mert
    Veneman, Jason G.
    Tivnan, Brian F.
    Bagrow, James P.
    Hines, Paul D. H.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [12] Parandehgheibi M, 2014, INT CONF SMART GRID, P242, DOI 10.1109/SmartGridComm.2014.7007653
  • [13] Rahnamay-Naeini, 2012, P 2012 IEEE POW EN S, P1, DOI DOI 10.1109/PESGM.2012.6345574
  • [14] Cascading Failures in Interdependent Infrastructures: An Interdependent Markov-Chain Approach
    Rahnamay-Naeini, Mahshid
    Hayat, Majeed M.
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (04) : 1997 - 2006
  • [15] Stochastic Analysis of Cascading-Failure Dynamics in Power Grids
    Rahnamay-Naeini, Mahshid
    Wang, Zhuoyao
    Ghani, Nasir
    Mammoli, Andrea
    Hayat, Majeed M.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (04) : 1767 - 1779
  • [16] Vaiman M., 2011, RISK ASSESSMENT CASC
  • [17] Small vulnerable sets determine large network cascades in power grids
    Yang, Yang
    Nishikawa, Takashi
    Motter, Adilson E.
    [J]. SCIENCE, 2017, 358 (6365)
  • [18] MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education
    Zimmerman, Ray Daniel
    Edmundo Murillo-Sanchez, Carlos
    Thomas, Robert John
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (01) : 12 - 19