On the Dynamics of Transmission Capacity and Load Loss during Cascading Failures in Power Grids

被引:0
作者
Shuvro, Rezoan A. [1 ]
Das, Pankaz [1 ]
Rahnamay-Naeini, Mahshid [2 ]
Sorrentino, Francesco [3 ]
Hayat, Majeed M. [1 ]
机构
[1] Marquette Univ, Dept Elect & Comp Engn, Milwaukee, WI 53233 USA
[2] Univ S Florida, Elect Engn Dept, Tampa, FL 33620 USA
[3] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
来源
PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE) | 2019年
基金
美国国家科学基金会;
关键词
Cascading failures; load loss; average transmission capacity loss; Monte-Carlo simulations; Markov chain;
D O I
10.1109/isgteurope.2019.8905451
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, a novel analytical model is proposed to predict the average transmission-capacity loss and load loss during a cascading failure as a function of time and their steady state values. Cascading failures in the power grid are described using a Markov-chain approach, in which the state transition probabilities depend on the number and capacities of the failed lines. The transition matrix is characterized parametrically using Monte Carlo simulations of cascading failures in the power grid. The severity of cascading failure is estimated using two metrics: the expected number of transmission-line failures and the amount of load shedding/load loss (inferred from the average transmission capacity loss) in the steady state. These two metrics provide critical information regarding the severity of a cascading failure in a power grid (in terms of both the distribution of blackout sizes and the amounts of load shedding). One of the benefits of this model is that it enables the understanding of the effect of initial failures and of the operating parameters of the power grid on cascading failures.
引用
收藏
页数:5
相关论文
共 18 条
  • [1] [Anonymous], 2004, REP US DEP ENERGY
  • [2] [Anonymous], 2018 N AM POW S NAPS
  • [3] Baldick R, 2008, IEEE POW ENER SOC GE, P52
  • [4] Benchmarking and Validation of Cascading Failure Analysis Tools
    Bialek, J.
    Ciapessoni, E.
    Cirio, D.
    Cotilla-Sanchez, E.
    Dent, C.
    Dobson, I.
    Henneaux, P.
    Hines, P.
    Jardim, J.
    Miller, S.
    Panteli, M.
    Papic, M.
    Pitto, A.
    Quiros-Tortos, J.
    Wu, D.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (06) : 4887 - 4900
  • [5] Catastrophic cascade of failures in interdependent networks
    Buldyrev, Sergey V.
    Parshani, Roni
    Paul, Gerald
    Stanley, H. Eugene
    Havlin, Shlomo
    [J]. NATURE, 2010, 464 (7291) : 1025 - 1028
  • [6] Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization
    Dobson, Ian
    Carreras, Benjamin A.
    Lynch, Vickie E.
    Newman, David E.
    [J]. CHAOS, 2007, 17 (02)
  • [7] A critical review of cascading failure analysis and modeling of power system
    Guo, Hengdao
    Zheng, Ciyan
    Iu, Herbert Ho-Ching
    Fernando, Tyrone
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 80 : 9 - 22
  • [8] Henneaux P, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS)
  • [9] Hines P., 2008, POWER ENERGY SOC GEN, P1, DOI 10.1109/PES.2008.4596715
  • [10] Huang LB, 2018, IEEE POW ENER SOC GE