Tropical toric geometry

被引:0
作者
Kajiwara, Takeshi [1 ]
机构
[1] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
来源
TORIC TOPOLOGY | 2008年 / 460卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is based on the talk in Conference of Toric Topology in 2006. The aim of the article is to give a survey of our theory of tropical toric varieties. The purpose of tropical toric varieties is to compactify tropical varieties, which are defined in Euclidean spaces in many literature, and to establish a complete tropical version of theorems in algebraic geometry.
引用
收藏
页码:197 / 207
页数:11
相关论文
共 50 条
[21]   A note on toric contact geometry [J].
Boyer, CP ;
Galicki, K .
JOURNAL OF GEOMETRY AND PHYSICS, 2000, 35 (04) :288-298
[22]   Matter from toric geometry [J].
Candelas, P ;
Perevalov, E ;
Rajesh, G .
NUCLEAR PHYSICS B, 1998, 519 (1-2) :225-238
[23]   Scattering amplitudes and toric geometry [J].
Antonio Amariti ;
Davide Forcella .
Journal of High Energy Physics, 2013
[24]   TORIC GEOMETRY OF CONVEX QUADRILATERALS [J].
Legendre, Eveline .
JOURNAL OF SYMPLECTIC GEOMETRY, 2011, 9 (03) :343-385
[25]   Toric geometry and equivariant bifurcations [J].
Stewart, I ;
Dias, APS .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 143 (1-4) :235-261
[26]   Secant Cumulants and Toric Geometry [J].
Michalek, Mateusz ;
Oeding, Luke ;
Zwiernik, Piotr .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (12) :4019-4063
[27]   Toric geometry of cuts and splits [J].
Sturmfels, Bernd ;
Sullivant, Seth .
MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 :689-709
[28]   Discriminants, Polytopes, and Toric Geometry [J].
Piene, Ragni .
MATHEMATICS IN THE 21ST CENTURY, 2015, 98 :151-162
[29]   TORIC GEOMETRY AND GROTHENDIECK RESIDUES [J].
Gelfond, O. A. ;
Khovanskii, A. G. .
MOSCOW MATHEMATICAL JOURNAL, 2002, 2 (01) :99-112
[30]   Scattering amplitudes and toric geometry [J].
Amariti, Antonio ;
Forcella, Davide .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09)