Tropical toric geometry

被引:0
作者
Kajiwara, Takeshi [1 ]
机构
[1] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
来源
TORIC TOPOLOGY | 2008年 / 460卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is based on the talk in Conference of Toric Topology in 2006. The aim of the article is to give a survey of our theory of tropical toric varieties. The purpose of tropical toric varieties is to compactify tropical varieties, which are defined in Euclidean spaces in many literature, and to establish a complete tropical version of theorems in algebraic geometry.
引用
收藏
页码:197 / 207
页数:11
相关论文
共 50 条
[1]   A comparison of positivity in complex and tropical toric geometry [J].
Burgos Gil, Jose Ignacio ;
Gubler, Walter ;
Jell, Philipp ;
Kuennemann, Klaus .
MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (3-4) :1199-1255
[2]   TORIC VECTOR BUNDLES, VALUATIONS AND TROPICAL GEOMETRY [J].
Kaveh, Kiumars ;
Manon, Christopher .
arXiv, 2023,
[3]   A comparison of positivity in complex and tropical toric geometry [J].
José Ignacio Burgos Gil ;
Walter Gubler ;
Philipp Jell ;
Klaus Künnemann .
Mathematische Zeitschrift, 2021, 299 :1199-1255
[4]   Toric Vector Bundles, Valuations and Tropical Geometry [J].
Kaveh, Kiumars ;
Manon, Christopher .
ALGEBRAS AND REPRESENTATION THEORY, 2025,
[5]   Tropical geometry and correspondence theorems via toric stacks [J].
Tyomkin, Ilya .
MATHEMATISCHE ANNALEN, 2012, 353 (03) :945-995
[6]   Tropical geometry and correspondence theorems via toric stacks [J].
Ilya Tyomkin .
Mathematische Annalen, 2012, 353 :945-995
[7]   Morse homology, tropical geometry, and homological mirror symmetry for toric varieties [J].
Mohammed Abouzaid .
Selecta Mathematica, 2009, 15 :189-270
[8]   Morse homology, tropical geometry, and homological mirror symmetry for toric varieties [J].
Abouzaid, Mohammed .
SELECTA MATHEMATICA-NEW SERIES, 2009, 15 (02) :189-270
[9]   The geometry of toric schemes [J].
Rohrer, Fred .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (04) :700-708
[10]   On the geometry of toric arrangements [J].
De Concini, C ;
Procesi, C .
TRANSFORMATION GROUPS, 2005, 10 (3-4) :387-422