Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure

被引:53
作者
Koes, David Ryan [1 ]
Camacho, Carlos J. [1 ]
机构
[1] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA 15260 USA
关键词
COMPUTATIONAL HOT-SPOTS; BINDING-SITES; INTERFACES; IDENTIFICATION; PREDICTION; RESIDUES; DATABASE; ENERGY; CLASSIFICATION; ANCHOR;
D O I
10.1093/bioinformatics/btr717
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Protein-protein interactions (PPIs) are a promising, but challenging target for pharmaceutical intervention. One approach for addressing these difficult targets is the rational design of small-molecule inhibitors that mimic the chemical and physical properties of small clusters of key residues at the protein-protein interface. The identification of appropriate clusters of interface residues provides starting points for inhibitor design and supports an overall assessment of the susceptibility of PPIs to small-molecule inhibition. Results: We extract Small-Molecule Inhibitor Starting Points (SMISPs) from protein-ligand and protein-protein complexes in the Protein Data Bank (PDB). These SMISPs are used to train two distinct classifiers, a support vector machine and an easy to interpret exhaustive rule classifier. Both classifiers achieve better than 70% leave-one-complex-out cross-validation accuracy and correctly predict SMISPs of known PPI inhibitors not in the training set. A PDB-wide analysis suggests that nearly half of all PPIs may be susceptible to small-molecule inhibition.
引用
收藏
页码:784 / 791
页数:8
相关论文
共 50 条
[31]   BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities [J].
Liu, Tiqing ;
Lin, Yuhmei ;
Wen, Xin ;
Jorissen, Robert N. ;
Gilson, Michael K. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D198-D201
[32]   Critical review of the role of HTS in drug discovery [J].
Macarron, R .
DRUG DISCOVERY TODAY, 2006, 11 (7-8) :277-279
[33]   Comparison of site-specific rate-inference methods for protein sequences: Empirical Bayesian methods are superior [J].
Mayrose, I ;
Graur, D ;
Ben-Tal, N ;
Pupko, T .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (09) :1781-1791
[34]   ANCHOR: a web server and database for analysis of protein-protein interaction binding pockets for drug discovery [J].
Meireles, Lidio M. C. ;
Doemling, Alexander S. ;
Camacho, Carlos J. .
NUCLEIC ACIDS RESEARCH, 2010, 38 :W407-W411
[35]   Hot spots-A review of the protein-protein interface determinant amino-acid residues [J].
Moreira, Irina S. ;
Fernandes, Pedro A. ;
Ramos, Maria J. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 68 (04) :803-812
[36]   Protein-protein interaction hotspots carved into sequences [J].
Ofran, Yanay ;
Rost, Burkhard .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (07) :1169-1176
[37]   Global mapping of pharmacological space [J].
Paolini, Gaia V. ;
Shapland, Richard H. B. ;
van Hoorn, Willem P. ;
Mason, Jonathan S. ;
Hopkins, Andrew L. .
NATURE BIOTECHNOLOGY, 2006, 24 (07) :805-815
[38]   Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery [J].
Perot, Stephanie ;
Sperandio, Olivier ;
Miteva, Maria A. ;
Camproux, Anne-Claude ;
Villoutreix, Bruno O. .
DRUG DISCOVERY TODAY, 2010, 15 (15-16) :656-667
[39]   The Structure-Based Design of Mdm2/Mdmx-p53 Inhibitors Gets Serious [J].
Popowicz, Grzegorz M. ;
Doemling, Alexander ;
Holak, Tad A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (12) :2680-2688
[40]   Anchor residues in protein-protein interactions [J].
Rajamani, D ;
Thiel, S ;
Vajda, S ;
Camacho, CJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) :11287-11292